若A、B、C三點在同一條直線上,且AB=5,BC=3,那么AC=


  1. A.
    8
  2. B.
    4
  3. C.
    2
  4. D.
    2或8
D
分析:此題注意考慮兩種情況:點C在線段AB的延長線上或點C在線段AB上.
解答:如圖所示,
,
在圖1中,AC=AB+BC=5+3=8;在圖2中,AC=AB-BC=5-3=2.
故選D.
點評:此題要結合具體的圖形,根據線段的和差進行計算.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

12、(1)如圖①,A,B,C三點在一直線上,分別以AB,BC為邊在AC同側作等邊△ABD和等邊△BCE,AE交BD于點F,DC交BE于點G.則AE=DC嗎?BF=BG嗎?請說明理由;
(2)如圖②,若A,B,C不在同一直線上,那么這時上述結論成立嗎?若成立請證明;
(3)在圖①中,若連接F,G,你還能得到什么結論?(寫出結論,不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•鹽城模擬)如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線y=
14
x2+bx+c
經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數(shù)解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發(fā)以1個單位/秒的速度向點F運動,同時點S從點Q出發(fā)沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線數(shù)學公式經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數(shù)解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發(fā)以1個單位/秒的速度向點F運動,同時點S從點Q出發(fā)沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江蘇省泰州市泰興市實驗中學中考數(shù)學二模試卷(解析版) 題型:解答題

如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數(shù)解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發(fā)以1個單位/秒的速度向點F運動,同時點S從點Q出發(fā)沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源:2013年5月中考數(shù)學模擬試卷(12)(解析版) 題型:解答題

如圖(1),分別以兩個彼此相鄰的正方形OABC與CDEF的邊OC、OA所在直線為x軸、y軸建立平面直角坐標系(O、C、F三點在x軸正半軸上).若⊙P過A、B、E三點(圓心在x軸上)交y軸于另一點Q,拋物線經過A、C兩點,與x軸的另一交點為G,M是FG的中點,B點坐標為(2,2).
(1)求拋物線的函數(shù)解析式和點E的坐標;
(2)求證:ME是⊙P的切線;
(3)如圖(2),點R從正方形CDEF的頂點E出發(fā)以1個單位/秒的速度向點F運動,同時點S從點Q出發(fā)沿y軸以5個單位/秒的速度向上運動,連接RS,設運動時間為t秒(0<t<1),在運動過程中,正方形CDEF在直線RS下方部分的面積是否變化?若不變,說明理由并求出其值;若變化,請說明理由;

查看答案和解析>>

同步練習冊答案