如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點(diǎn)D,連接AD,則∠DAC的度數(shù)為    度.
【答案】分析:由于AB是直徑,根據(jù)圓周角定理可知∠ADB是直角,即AD⊥BC;根據(jù)等邊三角形三線合一的性質(zhì)知,DA是∠BAC的角平分線,由此可求得∠DAC的度數(shù).
解答:解:∵AB是⊙O的直徑,
∴∠ADB=90°,即AD⊥BC;
又∵△ABC是等邊三角形,
∴DA平分∠BAC,即∠DAC=∠BAC=30°.
點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì)及圓周角定理的推論;
圓周角定理的推論:半圓(。┖椭睆剿鶎(duì)的圓周角是直角;
等邊三角形三線合一:等邊三角形每條邊上的中線、高線和所對(duì)角的平分線互相重合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長;
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案