【題目】如圖,把長方形ABCD旋轉(zhuǎn)到長方形GBEF的位置,此時點A,B,E在一條直線上.
(1)指出這個過程中的旋轉(zhuǎn)中心,并說明旋轉(zhuǎn)角度數(shù)是多少;
(2)指出圖中的對應(yīng)線段;
(3)連接BD,BF,DF,判斷△DBF的形狀,并說明理由.
【答案】(1)旋轉(zhuǎn)中心為點B,旋轉(zhuǎn)角度數(shù)是90°;(2)對應(yīng)線段:AB與GB,AD與GF,DC與FE,BC與BE;(3)△DBF是等腰直角三角形,理由見解析.
【解析】試題分析:(1)由長方形的性質(zhì)得出∠ABC=90°,由已知條件和旋轉(zhuǎn)的性質(zhì)得出∠CBE=180°-90°=90°,得出旋轉(zhuǎn)中心是點B,旋轉(zhuǎn)角度數(shù)是90°;
(2)由旋轉(zhuǎn)的性質(zhì)得出長方形GBEF≌長方形ABCD,得出BG=BA,BE=BC,EF=CD,GF=AD,即可得出結(jié)果;
(3)由旋轉(zhuǎn)的性質(zhì)得:BF=BD,∠DBF=∠CBE=90°,即可得出結(jié)論.
試題解析:(1)∵四邊形ABCD是長方形,
∴∠ABC=90°,
∵把長方形ABCD旋轉(zhuǎn)到長方形GBEF的位置,此時點A,B,E在一條直線上,
∴∠CBE=180°-90°=90°,
∴旋轉(zhuǎn)中心是點B,旋轉(zhuǎn)角度數(shù)是90°;
(2)由旋轉(zhuǎn)的性質(zhì)得:長方形GBEF≌長方形ABCD,
∴BG=BA,BE=BC,EF=CD,GF=AD,BF=BD,
∴圖中的對應(yīng)線段為BG和BA,BE和BC,EF和CD,GF和AD,BF和BD;
(3)△DBF是等腰直角三角形;理由如下:
由旋轉(zhuǎn)的性質(zhì)得:BF=BD,∠DBF=∠CBE=90°,
∴△DBF是等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,直線y=mx與雙曲線 相交于A(﹣1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.
(1)求m、n的值;
(2)求直線AC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點C,若ACAB=12,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O為坐標(biāo)原點,四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于( )
A.60
B.80
C.30
D.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,∠ACB=2∠B,∠C=90°,AD為∠BAC的平分線交BC于D,求證:AB=AC+CD.(提示:在AB上截取AE=AC,連接DE)
(2)如圖2,當(dāng)∠C≠90°時,其他條件不變,線段AB、AC、CD又有怎樣的數(shù)量關(guān)系,直接寫出結(jié)果,不需要證明.
(3)如圖3,當(dāng)∠ACB≠90°,∠ACB=2∠B ,AD為△ABC的外角∠CAF的平分線,交BC的延長線于點D,則線段 AB、AC、CD又有怎樣的數(shù)量關(guān)系?寫出你的猜想,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公樓頂端A測得旗桿頂端E的俯角α是45°,旗桿底端D到大樓前梯坎底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1: ,求大樓AB的高度是多少?(精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司組織退休職工組團(tuán)前往某景點游覽參觀,參加人員共70人.旅游景點規(guī)定:①門票每人60元,無優(yōu)惠;②上山游覽必須乘坐景點安排的觀光車游覽,觀光車有小型車和中型車兩類,分別可供4名和11名乘客乘坐;且小型車每輛收費60元,中型車每人收費10元.若70人正好坐滿每輛車且參觀游覽的總費用不超過5000元,問景點安排的小型車和中型車各多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察如圖所示的圖形,回答下列問題:
(1) 圖中的點被線段隔開分成四層,第一層有1個點,第二層有3個點,第三層有5個點,第四層有___________個點;
(2) 如果要你繼續(xù)畫下去,那么第五層有________點, 第10層有_________點;
(3) 某一層上有77個點,你可知道這是第_________層;
(4) 第一層與第二層的和是__________,前三層的和是_________,前四層和為____________,
你有沒有發(fā)現(xiàn)什么規(guī)律?
根據(jù)你的推測,前一百層的和是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的長;
(2)求△ADB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com