【題目】如圖所示,ABCD中,E,F分別是AB、CD上的點,AECF,M、N分別是DE、BF的中點.

1)求證:四邊形ENFM是平行四邊形.

2)若∠ABC2A,求∠A的度數(shù).

【答案】1)見解析;(2)∠A60°

【解析】

1)先證ADE≌△CBFSAS),得DE=BFAEDCFB,進而得MEFN,AEDABF,即MEFN,由此得證;

2)由平行線的性質(zhì)得A+∠ABC180°,據(jù)此計算得解.

1)證明:四邊形ABCD是平行四邊形,

ADBC,AC

AECF

∴△ADE≌△CBFSAS),

∴∠AEDCFB,DEBF,

由四邊形ABCD是平行四邊形,

DCAB

∴∠CFBABF

∴∠AEDABF

MEFN

M、N分別是DE、BF的中點,且DEBF

MEFN

四邊形ENFM是平行四邊形;

2四邊形ABCD是平行四邊形,

∴∠A+∠ABC180°,

∵∠ABC2∠A

∴3∠A180°,

∴∠A60°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學生的個性化學習需求,某校就“學生對知識拓展,體育特長、藝術(shù)特長和實踐活動四類選課意向”進行了抽樣調(diào)查(每人選報一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息,解答下列問題:

(1)求扇形統(tǒng)計圖中m的值,并補全條形統(tǒng)計圖;
(2)在被調(diào)查的學生中,隨機抽一人,抽到選“體育特長類”或“藝術(shù)特長類”的學生的概率是多少?
(3)已知該校有800名學生,計劃開設(shè)“實踐活動類”課程每班安排20人,問學校開設(shè)多少個“實踐活動類”課程的班級比較合理?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F,連接BD.

(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

小題1:如圖1,可以求出陰影部分的面積是_______ (寫成兩數(shù)平方差的形式)

小題2:如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是_______,長是______,面積是_________ (寫成多項式乘法的形式).

小題3:比較圖 1,圖2的陰影部分面積,可以得到乘法公式________ (用式子表達).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,擊打臺球時小球反彈前后的運動路線遵循對稱原理,即小球反彈前后的運動路線與臺球案邊緣的夾角相等(α=β),在一次擊打臺球時,把位于點P處的小球沿所示方向擊出,小球經(jīng)過5次反彈后正好回到點P,若臺球案的邊AD的長度為4,則小球從P點被擊出到回到點P,運動的總路程為( )

A.16
B.16
C.20
D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“五一”假日期間,某網(wǎng)店為了促銷,設(shè)計了一種抽獎送積分活動,在該網(wǎng)店網(wǎng)頁上顯示如圖所示的圓形轉(zhuǎn)盤,轉(zhuǎn)盤被均等的分成四份,四個扇形上分別標有“謝謝惠顧”、“10分”、“20分”、“40分”字樣.參與抽獎的顧客只需用鼠標點擊轉(zhuǎn)盤,指針就會在轉(zhuǎn)動的過程中隨機的停在某個扇形區(qū)域,指針指向扇形上的積分就是顧客獲得的獎勵積分,凡是在活動期間下單的顧客,均可獲得兩次抽獎機會,求兩次抽獎顧客獲得的總積分不低于30分的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形ABCD的頂點A的坐標為(2,0),點B的坐標為(01),對角線BDx軸平行,若直線ykx+5+2kk≠0)與菱形ABCD有交點,則k的取值范圍是( 。

A.B.

C.D.2≤k≤2k≠0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,上一點,垂直平分,分別交,于點,,連接,

1)求證:四邊形是菱形;

2)若,的中點,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1:y=ax2+bx+4與x軸交于A(﹣3,0),B兩點,與y軸交于點C,點M(﹣ ,5)是拋物線C1上一點,拋物線C2與拋物線C1關(guān)于y軸對稱,點A、B、M關(guān)于y軸的對稱點分別為點A′、B′、M′.

(1)求拋物線C1的解析式;
(2)過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D、P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案