計(jì)算:
①(2x)3•(-5xy2)
②(3x+1)(x+2)
③(4n-n)2
④(x+2y-3)(x-2y-3)
⑤先化簡,再求值:[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=5,y=2.
解:①(2x)3•(-5xy2)=8x3•(-5xy2)=-40x4y2,
②(3x+1)(x+2)=3x2+6x+x+2=3x2+7x+2,
③(4n-n)2=(3n)2=9n2,
④(x+2y-3)(x-2y-3)=[(x-3)+2y][(x-3)-2y]=(x-3)2-(2y)2=x2-6x+9-4y2=x2-6x-4y2+9;
⑤[(x+2y)(x-2y)-(x+4y)2]÷4y=[x2-4y2-x2-8xy-16y2]÷4y=[-20y2-8xy]÷4y=-5y-2x,
把x=5,y=2代入上式得:
-5×2-2×5=-20.
分析:①分別根據(jù)冪的乘方與積的乘方法則計(jì)算即可.
②先用括號中的每一項(xiàng)分別與另一括號中的每一項(xiàng)分別進(jìn)行相乘,再合并同類項(xiàng),即可求出答案;
③先把括號中進(jìn)行合并,再算乘方,即可求出答案;
④先把(x+2y-3)(x-2y-3)進(jìn)行整理,得出[(x-3)+2y][(x-3)-2y],再根據(jù)平方差公式進(jìn)行計(jì)算即可;
⑤先根據(jù)平方差公式進(jìn)行計(jì)算,再除以4y,然后把x=5,y=2代入即可求出答案.
點(diǎn)評:此題考查了單項(xiàng)式乘單項(xiàng)式,完全平方公式,平方差公式,多項(xiàng)式乘多項(xiàng)式等知識點(diǎn);解題的關(guān)鍵是熟記公式結(jié)構(gòu),認(rèn)真計(jì)算即可.