分析 根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半可得∠AED=30°,進(jìn)而求得∠1=60°;由勾股定理求出DE,再根據(jù)陰影FDE的面積S1=S扇形AEF-S△ADE、陰影ECB的面積S2=S矩形-S△ADE-S扇形ABE列式計(jì)算即可得解.
解答 解:∵在矩形ABCD中,AB=4,BC=2,
∴AB=2DA,AB=AE(扇形的半徑),
∴AE=2DA,
∴∠AED=30°,
∴∠1=90°-30°=60°,
∵DA=2
∴AB=2DA=4,
∴AE=4,
∴DE=$\sqrt{A{E}^{2}-D{A}^{2}}$=2$\sqrt{3}$,
∴陰影FDE的面積S1=S扇形AEF-S△ADE=$\frac{60π×{4}^{2}}{360}$-$\frac{1}{2}$×2×2$\sqrt{3}$=$\frac{8}{3}$π-2$\sqrt{3}$.
陰影ECB的面積S2=S矩形-S△ADE-S扇形ABE=2×4-$\frac{1}{2}$×2×2$\sqrt{3}$-$\frac{30π×{4}^{2}}{360}$=8-2$\sqrt{3}$-$\frac{4}{3}$π;.
則圖中陰影部分的面積為=8-2$\sqrt{3}$-$\frac{4}{3}$π+$\frac{8}{3}$π-2$\sqrt{3}$=8-4$\sqrt{3}$+$\frac{4}{3}$π.
故答案為:8-4$\sqrt{3}$+$\frac{4}{3}$π.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì),扇形的面積計(jì)算,直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),熟記性質(zhì)并求出∠AED=30°是解題的關(guān)鍵,也是本題的難點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y>0 | B. | -2<y≤0 | C. | -2<y≤1 | D. | 無法判斷 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2x+3}$+4=0 | B. | $\sqrt{x-7}$+$\sqrt{x}$=7 | C. | $\sqrt{x-3}$=1-x | D. | $\sqrt{x-1}$+$\sqrt{1-x}$=3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com