若圓錐的側(cè)面展開時一個弧長為l6的扇形,則這個圓錐的底面半經(jīng)是     
8
該題考查基本概念
圓錐側(cè)面展開的扇形弧長就是底面圓的周長,
由此可知,即
那么圓錐的底面半徑是8
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011山東濟南,12,3分)如圖,O為原點,點A的坐標(biāo)為(3,0),點B的坐標(biāo)為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為( 。

A.            B.       C.                    D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是半徑為 6 的⊙D的圓周,C點是上的任意一點,△ABD是等邊三角形,則四邊形ABCD的周長P的取值范圍是                       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,D是△ABC的邊BC的中點,過AD延長線上的點E作AD的垂線EF,E為垂足,EF與AB的延長線相交于點F,點O在AD上,AO=CO,BC∥EF.
(1)證明:AB=AC;
(2)證明:點O是△ABC的外接圓的圓心;
(3)當(dāng)AB=5,BC=6時,連接BE,若∠ABE=90°,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•德州)●觀察計算
當(dāng)a=5,b=3時,的大小關(guān)系是
當(dāng)a=4,b=4時,的大小關(guān)系是=
●探究證明
如圖所示,△ABC為圓O的內(nèi)接三角形,AB為直徑,過C作CD⊥AB于D,設(shè)AD=a,BD=b.
(1)分別用a,b表示線段OC,CD;
(2)探求OC與CD表達式之間存在的關(guān)系(用含a,b的式子表示).
●歸納結(jié)論
根據(jù)上面的觀察計算、探究證明,你能得出的大小關(guān)系是:
●實踐應(yīng)用
要制作面積為1平方米的長方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(11·西寧)已知⊙O1、⊙O2的半徑分別是r1=2、r2=4,若兩圓相交,則圓心距O1O2可能取的值是
A.1B.2C.4D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙O的直徑AB的長為4㎝,C是⊙O上一點,
∠BAC=30°,過點C作⊙O的切線交AB的延長線于點
P,求BP的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•畢節(jié)地區(qū))如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是( 。

A、50π﹣48         B、25π﹣48        C、50π﹣24          D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)已知,AB是⊙O的直徑,AB=8,點C在⊙O的半徑OA上運動,PC⊥AB,垂足為C,PC=5,PT為⊙O的切線,切點為T.
⑴如圖⑴,當(dāng)C點運動到O點時,求PT的長;
⑵如圖⑵,當(dāng)C點運動到A點時,連結(jié)PO、BT,求證:PO∥BT;
⑶如圖⑶,設(shè),,求的函數(shù)關(guān)系式及最小值.
     

查看答案和解析>>

同步練習(xí)冊答案