解:(1)如圖1,CA=CD,∠ACD=60°,
所以△ACD是等邊三角形.
∵CB=CE,∠ACD=∠BCE=60°,
所以△ECB是等邊三角形.
∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,
又∵∠ACD=∠BCE,
∴∠ACE=∠BCD.
∵AC=DC,CE=BC,
∴△ACE≌△DCB.
∴∠EAC=∠BDC.
∠AFB是△ADF的外角.
∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.
如圖2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,
∴△ACE≌△DCB.
∴∠AEC=∠DBC,
又∵∠FDE=∠CDB,∠DCB=90°,
∴∠EFD=90°.
∴∠AFB=90°.
如圖3,∵∠ACD=∠BCE,
∴∠ACD-∠DCE=∠BCE-∠DCE.
∴∠ACE=∠DCB.
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴∠EAC=∠BDC.
∵∠BDC+∠FBA=180°-∠DCB=180°-(180-∠ACD)=120°,
∴∠FAB+∠FBA=120°.
∴∠AFB=60°.
故填120°,90°,60°.
(2)∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE.
∴∠ACE=∠DCB.
∴∠CAE=∠CDB.
∴∠DFA=∠ACD.
∴∠AFB=180°-∠DFA=180°-∠ACD=180°-α.
(3)∠AFB=180°-α;
證明:∵∠ACD=∠BCE=α,則∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB.
在△ACE和△DCB中
,
則△ACE≌△DCB(SAS).
則∠CBD=∠CEA,由三角形內(nèi)角和知∠EFB=∠ECB=α.
∠AFB=180°-∠EFB=180°-α.
分析:(1)如圖1,首先證明△BCD≌△ECA,得出∠EAC=∠BDC,再根據(jù)∠AFB是△ADF的外角求出其度數(shù).
如圖2,首先證明△ACE≌△DCB,得出∠AEC=∠DBC,又有∠FDE=∠CDB,進而得出∠AFB=90°.
如圖3,首先證明△ACE≌△DCB,得出∠EAC=∠BDC,又有∠BDC+∠FBA=180°-∠DCB得到∠FAB+∠FBA=120°,進而求出∠AFB=60°.
(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的內(nèi)角和定理得∠CAE=∠CDB,從而得出∠DFA=∠ACD,得到結(jié)論∠AFB=180°-α.
(3)由∠ACD=∠BCE得到∠ACE=∠DCB,通過證明△ACE≌△DCB得∠CBD=∠CEA,由三角形內(nèi)角和定理得到結(jié)論∠AFB=180°-α.
點評:本題考查了全等三角形的判定及其性質(zhì)、三角形內(nèi)角和定理等知識.