一元二次方程x2-ax-2=0,根的情況是( )
A.有兩個(gè)不相等的實(shí)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.無法判斷
D.無實(shí)數(shù)根
【答案】分析:由一元二次方程x2-ax-2=0,即可得判別式△=a2+4>0,則可得關(guān)于x的一元二次方程x2-ax-2=0,根的情況是有兩個(gè)不相等的實(shí)數(shù)根.
解答:解:∵△=(-a)2-4×1×(-1)=a2+4>0,
∴關(guān)于x的一元二次方程x2-ax-2=0根的情況是:有兩個(gè)不相等的實(shí)數(shù)根.
故選A.
點(diǎn)評(píng):此題考查了一元二次方程根的判別式的知識(shí).此題難度不大,注意一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時(shí),方程有兩個(gè)不相等的兩個(gè)實(shí)數(shù)根;②當(dāng)△=0時(shí),方程有兩個(gè)相等的兩個(gè)實(shí)數(shù)根;③當(dāng)△<0時(shí),方程無實(shí)數(shù)根;反之也成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

從甲、乙兩題中選做一題,如果兩題都做,只以甲題計(jì)分.
甲題:若關(guān)于x的一元二次方程x2-2(2-k)x+k2+12=0有實(shí)數(shù)根α、β.
(1)求實(shí)數(shù)k的取值范圍;
(2)設(shè)t=
α+βk
,求t的最小值.
乙題:如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x=1是一元二次方程x2+mx+n=0的一個(gè)根,則m2+2mn+n2的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次方程x2+(2m-1)x+m2=0有兩個(gè)實(shí)數(shù)根x1和x2
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x12+x22=7時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一元二次方程x2-3x+1=0的兩根為x1、x2,則x1+x2-x1•x2=
2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•常德)若一元二次方程x2+2x+m=0有實(shí)數(shù)解,則m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案