【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關(guān)于原點(diǎn)成中心對(duì)稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)△ABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△A2BC2,并寫出點(diǎn)A2的坐標(biāo).
【答案】(1)見解析,C1的坐標(biāo)為:(-3,-1);(2)見解析,A2的坐標(biāo)為:(-2,1)
【解析】
(1)根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的特征確定A1,B1,C1,再順次連接即可得到△A1B1C1;
(2)△ABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后的對(duì)稱點(diǎn),再順次連接即可.
解:(1)△ABC關(guān)于原點(diǎn)成中心對(duì)稱的△A1B1C1如下圖,C1的坐標(biāo)為:(-3,-1)
(2)△ABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°對(duì)應(yīng)的△A2BC2如下圖,A2的坐標(biāo)為:(-2,1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l和雙曲線y=(k>0)交于A、B兩點(diǎn),P是線段AB上的點(diǎn)(不與A、B重合),過(guò)點(diǎn)A、B、P分別向x軸作垂線,垂足分別為C、D、E,連接OA、OB、OP,設(shè)△AOC的面積為S1、△BOD的面積為S2、△POE的面積為S3,則( )
A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx﹣4k+4與拋物線y=x2﹣x交于A、B兩點(diǎn).
(1)直線總經(jīng)過(guò)定點(diǎn),請(qǐng)直接寫出該定點(diǎn)的坐標(biāo);
(2)點(diǎn)P在拋物線上,當(dāng)k=﹣時(shí),解決下列問(wèn)題:
①在直線AB下方的拋物線上求點(diǎn)P,使得△PAB的面積等于20;
②連接OA,OB,OP,作PC⊥x軸于點(diǎn)C,若△POC和△ABO相似,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明在一次測(cè)驗(yàn)中解答的填空題:①若x2 =1,則x=1; ②方程x(x-1)=x-1的解是x=2;③已知三角形兩邊分別為2和9,第三邊長(zhǎng)是方程x 2-14x+48=0的根,則這個(gè)三角形的周長(zhǎng)是17或19;④方程的解是x=3,試卷中每個(gè)填空題5分,最后小明填空題的得分是( 。
A.0分B.5分C.10分D.15分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】服裝柜在銷售中發(fā)現(xiàn)某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六一”兒童節(jié),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷售量,增加盈利,減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝每降價(jià)4元,那么平均每天就可多售出8件,要想平均每天在銷售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,拋物線y=ax2﹣3ax+c(a≠0)與y軸交于點(diǎn)C(0,﹣4)與x軸交于點(diǎn)A.B,點(diǎn)A的坐標(biāo)為(4,0).
(1)求該拋物線的解析式.
(2)點(diǎn)D是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)D作DE∥AC,交BC于點(diǎn)E,連接CD.當(dāng)△CDE的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)Q(2,0).問(wèn):是否存在這樣的直線l,使得△OQF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一種商品的進(jìn)價(jià)為每件30元,銷售過(guò)程中發(fā)現(xiàn)月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系如圖所示.
(1)根據(jù)圖象直接寫出y與x之間的函數(shù)關(guān)系式.
(2)設(shè)這種商品月利潤(rùn)為W(元),求W與x之間的函數(shù)關(guān)系式.
(3)這種商品的銷售單價(jià)定為多少元時(shí),月利潤(rùn)最大?最大月利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中,∠BAC=90°,∠BAC 的平分線交 BC 于點(diǎn) O,以 O 為圓心作圓,⊙O 與 AC 相切于點(diǎn) D.
(1)試判斷 AB 與⊙O 的位置關(guān)系,并加以證明;
(2)在 Rt△ABC 中,若 AC=6,AB=3,求切線 AD 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).對(duì)稱軸為直線,點(diǎn)在拋物線上.
(1)如圖1,為直線下方拋物線上的一點(diǎn),連接、.當(dāng)的面積最大時(shí),在直線上取一點(diǎn),過(guò)作軸的垂線,垂足為點(diǎn),連接,.若時(shí),求的值;
(2)將拋物線沿軸正方向平移得到新拋物線,經(jīng)過(guò)原點(diǎn).與軸的另一個(gè)交點(diǎn)為.設(shè)是拋物線上任意一點(diǎn),點(diǎn)在直線上,能否成為以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若能、直接寫出點(diǎn)的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com