【題目】如圖,在中,過點,垂足為點,過點分別作,垂足分別為.連接交線段于點.

1)在圖一中,,,有幾組相似的三角形,請寫出來;

2)在圖二中,證明:;

3)如果,試求的值.

【答案】(1)三組;(2)證明見解析;(3)4.

【解析】

(1)根據(jù)對應角相等即可得到三組相似三角形;(2)根據(jù)(1)即可得到△CDE∽△CAD,得到,同理可知,所以;(3)根據(jù)垂直關系得到CE、DF四點共圓,即可得到答案.

1)∵, ,

,

∵∠C=∠C,

∴△CDE∽△CAD,

∵∠A=∠A,

∴△DAE∽△CAD,

∴△CDE∽△DAE,

故有三組相似三角形,它們是:△CDE∽△CAD, △DAE∽△CAD, △CDE∽△DAE;

(2)由(1)可得△CDE∽△CAD,

,即,

同理可得,,

;

(3)∵,,

∴OD=,

,,

∴∠CED=∠CFD=,

∴C、E、D、F四點共圓,

∴∠CDE=∠CFE,∠DEF=∠DCF,

∴△ODE∽△OFC,

,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點F在邊AC上,DFBE相交于點G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)的對稱軸是x1,現(xiàn)給出下列4個結論:abc02ab0,4a+2b+c0b24ac0,其中錯誤的結論有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,AB=AC=10,BC=12,點E是弧BC的中點.

(1)過點EBC的平行線交AB的延長線于點D,求證:DE是⊙O的切線.

(2)F是弧AC的中點,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在平面直角坐標系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,拋物線y=x2+bx+c經過A,B兩點.

1)求拋物線的解析式;

2)點E是直角△ABC斜邊AB上一動點(點A、B除外),過點Ex軸的垂線交拋物線于點F,當線段EF的長度最大時,求點E、F的坐標;

3)在(2)的條件下:在拋物線上是否存在一點P,使△EFP是以EF為直角邊的直角三角形?若存在,請求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點E的直線DE,垂足為點D,且ME平分∠DMN

求證:(1DE是⊙O的切線;

2ME2MDMN

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)圖象如圖,下列結論:①abc0;②2ab0;③對于任意實數(shù)m,都滿足am2+bma+b;④ab+c0;⑤若ax12+bx1ax22+bx2,且x1x2,則x1+x22.其中正確的有_____.(把正確的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,反比例函數(shù)>0)圖象上一點A,連結OA,作AB軸于點B,作BCOA交反比例函數(shù)圖象于點C,作CD軸于點D,若點A、點C橫坐標分別為m、n,則mn的值為_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.把△ABCAB邊上的點D順時針旋轉90°得到△A′B′C′,A′C′AB于點E.若AD=BE,則△A′DE的面積是

查看答案和解析>>

同步練習冊答案