分析 (1)設(shè)y與x的關(guān)系式為y=kx(k≠0),再把當(dāng)x=-2時(shí)y=-4代入求出k的值即可;
(2)描出當(dāng)x=-2時(shí)y=-4的點(diǎn),再作過(guò)此點(diǎn)與原點(diǎn)的直線即可;
(3)根據(jù)函數(shù)圖象即可得出結(jié)論.
解答 解:(1)設(shè)y與x的關(guān)系式為y=kx(k≠0),
∵當(dāng)x=-2時(shí)y=-4,
∴-2k=-4,解得k=2,
∴y與x的函數(shù)關(guān)系式為:y=2x;
(2)如圖所示;
(3)由函數(shù)圖象可知,當(dāng)0≤x≤5時(shí),0≤y≤10.
點(diǎn)評(píng) 本題考查的是待定系數(shù)法求出正比例函數(shù)的解析式,能根據(jù)題意畫(huà)出函數(shù)圖象,利用數(shù)形結(jié)合求解是解答此題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{s}{4}+1=\frac{s}{6}$-20 | B. | $\frac{s}{4}+1=\frac{s}{6}-\frac{20}{60}$ | C. | $\frac{s}{4}-1=\frac{s}{6}-\frac{20}{60}$ | D. | $\frac{s}{4}-1=\frac{s}{6}+\frac{20}{60}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com