【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2=(1+)2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=(m+n)2(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a(bǔ)+b的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

(1)當(dāng)a、b、m、n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= , b= .

(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + = ( + )2;(答案不唯一)

(3)若a+4=(m+n)2 ,且a、m、n均為正整數(shù),求a的值.

【答案】(1) m+3n,2mn.;(2) 4、2、1、1;(3)13

【解析】試題分析

1)把等式的右邊展開(kāi),合并,即可得到用含“m、n”表達(dá)的ab

(2)本題答案不唯一,先給m、n任意賦值,如m=1,n=1,結(jié)合(1)中所得結(jié)論即可計(jì)算得到對(duì)應(yīng)的ab的值;

3)由(1)中結(jié)論結(jié)合可得: ,結(jié)合m、n均為正整數(shù)分情況討論求得mn的值,即可求得對(duì)應(yīng)的a的值了.

試題解析

1a+b=(m+n),

a+b=m+3n+2mn,

a=m+3nb=2mn.

故答案為:m+3n,2mn.

2本題答案不唯一,若設(shè)m=1,n=1

a=m+3n=4,b=2mn=2.

故答案可為:42、11.

3由題意,得:a=m+3nb=2mn

4=2mn,且m、n為正整數(shù),

m=2,n=1或者m=1n=2,

a=2+3×1=7,a=1+3×2=13.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【問(wèn)題情境】

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

【探究展示】

1)證明:AM=AD+MC;

2AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.

【拓展延伸】

3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】龍梅和玉榮是草原上的好朋友,可是有一次經(jīng)過(guò)一場(chǎng)爭(zhēng)吵之后,兩人不歡而散,龍梅的速度是/秒,4分鐘后她停了下來(lái),覺(jué)得有點(diǎn)后悔了,玉榮走的方向好像是和龍梅成直角,她的速度是/秒,如果她和龍梅同時(shí)停下來(lái),而這時(shí)候她倆正好相距200米,那么她走的方向是否成直角?如果她們現(xiàn)在想講和,那么原來(lái)的速度相向而行,多長(zhǎng)時(shí)間后能相遇?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在平行四邊形ABCD,C=60°,M、N分別是AD、BC的中點(diǎn),BC=2CD.

(1)求證四邊形MNCD是平行四邊形;

(2)求證BDMN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器經(jīng)營(yíng)業(yè)主兩次購(gòu)進(jìn)一批同種型號(hào)的掛式空調(diào)和電風(fēng)扇,第一次購(gòu)進(jìn)8臺(tái)空調(diào)和20臺(tái)電風(fēng)扇;第二次購(gòu)進(jìn)10臺(tái)空調(diào)和30臺(tái)電風(fēng)扇.
若第一次用資金17400元,第二次用資金22500元,求掛式空調(diào)和電風(fēng)扇每臺(tái)的采購(gòu)價(jià)各是多少元?
的條件下,若該業(yè)主計(jì)劃再購(gòu)進(jìn)這兩種電器70臺(tái),而可用于購(gòu)買這兩種電器的資金不超過(guò)30000元,問(wèn)該經(jīng)營(yíng)業(yè)主最多可再購(gòu)進(jìn)空調(diào)多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(聊城臨清市期末)如圖,四邊形ABCD中,ABCD,對(duì)角線ACBD交于點(diǎn)O,下列條件中不能說(shuō)明四邊形ABCD是平行四邊形的是(  )

A. ADBC B. ACBD

C. ABCD D. BACDCA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠A=AGE,D=DGC.

(1)試說(shuō)明ABCD;

(2)若∠1+2=180°,且∠BEC=2B+60°,求∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過(guò)點(diǎn)A,點(diǎn)A在第四象限,過(guò)點(diǎn)AAH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(﹣6,0).如圖1,正方形OBCD的頂點(diǎn)B在x軸的負(fù)半軸上,點(diǎn)C在第二象限.現(xiàn)將正方形OBCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達(dá)式.
(2)若α為銳角,tanα= ,當(dāng)AE取得最小值時(shí),求正方形OEFG的面積.
(3)當(dāng)正方形OEFG的頂點(diǎn)F落在y軸上時(shí),直線AE與直線FG相交于點(diǎn)P,△OEP的其中兩邊之比能否為 :1?若能,求點(diǎn)P的坐標(biāo);若不能,試說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案