【題目】如圖,有兩條公路OM,ON相交成30°角,沿公路OM方向離O點80米處有一所學校A.當重型運輸卡車P沿道路ON方向行駛時,在以P為圓心50米長為半徑的圓形區(qū)域內都會受到卡車噪聲的影響,且卡車P與學校A的距離越近噪聲影響越大.若已知重型運輸卡車P沿道路ON方向行駛的速度為18千米/時.

(1)求對學校A的噪聲影響最大時卡車P與學校A的距離;
(2)求卡車P沿道路ON方向行駛一次給學校A帶來噪聲影響的時間.

【答案】
(1)解:過點A作AD⊥ON于點D,

∵∠NOM=30°,AO=80m,

∴AD=40m,

即對學校A的噪聲影響最大時卡車P與學校A的距離為40米


(2)解:由圖可知:以50m為半徑畫圓,分別交ON于B,C兩點,AD⊥BC,BD=CD= BC,OA=80m,

∵在Rt△AOD中,∠AOB=30°,

∴AD= OA= ×80=40m,

在Rt△ABD中,AB=50,AD=40,由勾股定理得:BD= = =30m,

故BC=2×30=60米,即重型運輸卡車在經過BC時對學校產生影響.

∵重型運輸卡車的速度為18千米/小時,即 =300米/分鐘,

∴重型運輸卡車經過BC時需要60÷300=0.2(分鐘)=12(秒).

答:卡車P沿道路ON方向行駛一次給學校A帶來噪聲影響的時間為12秒


【解析】(1)直接利用直角三角形中30°所對的邊等于斜邊的一半求出即可;(2)根據(jù)題意可知,圖中AB=50m,AD⊥BC,且BD=CD,∠AOD=30°,OA=80m;再利用垂徑定理及勾股定理解答即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:x3﹣4x=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2008北京奧運會主會場“鳥巢”的座席數(shù)是91 000個,這個數(shù)用科學記數(shù)法表示為(
A.0.91×105
B.9.1×104
C.91×103
D.9.1×103

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市出租車收費標準是:起步價8元,當路程超過2km時,每1km收費1.8元,如果某出租車行駛xx2km),則司機應收費(單位:元)(  )

A. 8+1.8x2B. 8+1.8xC. 81.8xD. 81.8x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x3+4x分解因式的結果是(  )

A. x(x2+4) B. x(x+2)(x-2)

C. x(x+2)2 D. x(x-2)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=﹣x2+bx+c經過A(﹣1,0),B(4,0)兩點,與y軸相交于點C,連結BC,點P為拋物線上一動點,過點P作x軸的垂線l,交直線BC于點G,交x軸于點E.

(1)求拋物線的表達式;

(2)當P位于y軸右邊的拋物線上運動時,過點C作CF直線l,F(xiàn)為垂足,當點P運動到何處時,以P,C,F(xiàn)為頂點的三角形與OBC相似?并求出此時點P的坐標;

(3)如圖2,當點P在位于直線BC上方的拋物線上運動時,連結PC,PB,請問PBC的面積S能否取得最大值?若能,請出最大面積S,并求出此時點P的坐標,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)y= x與一次函數(shù)y=﹣x+7的圖象交于點A.

(1)求點A的坐標;
(2)設x軸上有一點P(a,0),過點P作x軸的垂線(垂線位于點A的右側),分別交y= x和y=﹣x+7的圖象于點B,C,連接OC.若BC= OA,求△OBC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于點D,DEAD且與AC的延長線交于點E.

(1)求證:DCDE

(2)tanCAB,AB=3,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產甲、乙兩種型號的防霧霾口罩共20萬只,且所有產品當月全部售出,原料成本、銷售單價及工人生產提成如表:

原料成本

12

8

銷售單價

18

12

生產提成

1

0.8

1若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產品分別是多少萬只?

2公司實行計件工資制,即工人每生產一只口罩獲得一定金額的提成,如果公司六月份投入總成本原料總成本+生產提成總額不超過239萬元,應怎樣安排甲、乙兩種型號的產量,可使該月公司所獲利潤最大?并求出最大利潤利潤=銷售收入﹣投入總成本

查看答案和解析>>

同步練習冊答案