如圖,平行四邊形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別是OB,OD的中點.(1)試說明四邊形AECF是平行四邊形.
(2)若AC=2,AB=1.若AC⊥AB,求線段BD的長.
分析:(1)在平行四邊形ABCD中,AC與BD互相平分,OA=OC,OB=OD,又E,F(xiàn)為OB,OD的中點,所以O(shè)E=OF,所以AC與EF互相平分,所以四邊形AECF為平行四邊形;
(2)首先根據(jù)平行四邊形的性質(zhì)可得AO=CO,BO=DO,再利用勾股定理計算出BO的長,進而可得BD的長.
解答:(1)證明:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵E,F(xiàn)為OB,OD的中點,
∴OE=OF,
∴AC與EF互相平分,
∴四邊形AECF為平行四邊形;

(2)解:∵四邊形ABCD是平行四邊形,
∴AO=CO,BO=DO,
∵AC=2,
∴AO=2,
∵AB=1,AC⊥AB,
∴BO=
AB2+AO2
=
1+1
=
2
,
∴BD=2
2
點評:此題主要考查了平行四邊形的判定與性質(zhì),關(guān)鍵是掌握平行四邊形對角線互相平分.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD在平面直角坐標系中,AD=6,若OA、OB的長是關(guān)于x的一元二精英家教網(wǎng)次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求
OA
AB
的值.
(2)若E為x軸上的點,且S△AOE=
16
3
,求經(jīng)過D、E兩點的直線的解析式,并判斷△AOE與△DAO是否相似?
(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,請直接寫出F點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,平行四邊形ABCD中,∠ABC的角平分線BE交AD于E點,AB=3,ED=1,則平行四邊形ABCD的周長是
14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC、BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn)一定角度后,分別交BC、AD于點E、F.
精英家教網(wǎng)
(1)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(2)當旋轉(zhuǎn)角為90°時,在圖2中畫出直線AC旋轉(zhuǎn)后的位置并證明此時四邊形ABEF是平行四邊形;
(3)在直線AC旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).(圖供畫圖或解釋時使用)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,平行四邊形ABCD中,對角線AC和BD相交于點O,如果AC=12,BD=10,AB=m,那么m的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD的兩條對角線AC、BD相交于點O,AB=5,AC=6,DB=8,則四邊形ABCD是的周長為
20
20

查看答案和解析>>

同步練習冊答案