【題目】問(wèn)題情境:在綜合與實(shí)踐課上,同學(xué)們以“已知三角形三邊的長(zhǎng)度,求三角形面積”為主題開(kāi)展數(shù)學(xué)活動(dòng),小穎想到借助正方形網(wǎng)格解決問(wèn)題.圖1,圖2都是8×8的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn).

操作發(fā)現(xiàn):小穎在圖1中畫(huà)出△ABC,其頂點(diǎn)A,B,C都是格點(diǎn),同時(shí)構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊DEEF分別經(jīng)過(guò)點(diǎn)C,A,她借助此圖求出了△ABC的面積.

1)在圖1中,小穎所畫(huà)的△ABC的三邊長(zhǎng)分別是AB=__________,BC=__________,AC=__________;△ABC的面積為_(kāi)_________.

解決問(wèn)題:(2)已知△ABC中,AB=,BC=2,AC=5,請(qǐng)你根據(jù)小穎的思路,在圖2的正方形網(wǎng)格中畫(huà)出△ABC,并計(jì)算△ABC的面積.

【答案】(1)5;;;;(2)見(jiàn)解析,△ABC的面積:10.

【解析】

1)根據(jù)方格與勾股定理即可求出各邊長(zhǎng),再利用大正方形的面積減去各邊上的直角三角形面積即可求出△ABC的面積;(2)根據(jù)三角形的邊長(zhǎng),利用勾股定理的逆定理知其為直角三角形,故利用方格可畫(huà)出圖形,再利用割補(bǔ)法即可求出面積.

1AB==5,BC==

AC==,

ABC的面積為:4×4×3×4×1×4×3×1=,

故答案為:5;;;;

2)補(bǔ)圖如下.△ABC的面積:6×5×3×1×5×5×2×6=10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了綠化校園,計(jì)劃購(gòu)買(mǎi)一批榕樹(shù)和香樟樹(shù),經(jīng)市場(chǎng)調(diào)查,榕樹(shù)的單價(jià)比香樟樹(shù)少20,購(gòu)買(mǎi)3棵榕樹(shù)和2棵香樟樹(shù)共需340.

(1)榕樹(shù)和香樟樹(shù)的單價(jià)各是多少?

(2)根據(jù)學(xué)校實(shí)際情況,需購(gòu)買(mǎi)兩種樹(shù)苗共150,總費(fèi)用不超過(guò)10840,且購(gòu)買(mǎi)香樟樹(shù)的棵數(shù)不少于榕樹(shù)的1.5,請(qǐng)你算算該校本次購(gòu)買(mǎi)榕樹(shù)和香樟樹(shù)共有哪幾種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形紙片ABCD中,AB8,將紙片折疊,使頂點(diǎn)B落在邊AD上的E點(diǎn)處,折痕的一端G點(diǎn)在邊BC上.

(1)如圖1,當(dāng)折痕的另一端FAB邊上且AE4時(shí),求AF的長(zhǎng)

(2)如圖2,當(dāng)折痕的另一端FAD邊上且BG10時(shí),

求證:EFEGAF的長(zhǎng).

(3)如圖3,當(dāng)折痕的另一端FAD邊上,B點(diǎn)的對(duì)應(yīng)點(diǎn)E在長(zhǎng)方形內(nèi)部,EAD的距離為2cm,且BG10時(shí),求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(-3,1),B(-2,4).

1)請(qǐng)你在方格中建立直角坐標(biāo)系,并寫(xiě)出C點(diǎn)的坐標(biāo);

2)把△ABC向下平移1個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,請(qǐng)你畫(huà)出平移后的△A1B1C1,若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)是

3)在x軸上存在一點(diǎn)D,使△DB1C1的面積等于3,求滿(mǎn)足條件的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車(chē)在城市街道上行駛速度不得超過(guò)70 km/h.如圖,一輛小汽車(chē)在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車(chē)速檢測(cè)儀正前方30 m,過(guò)了2 s,測(cè)得小汽車(chē)與車(chē)速檢測(cè)儀間距離為50 m,這輛小汽車(chē)超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,AE⊥BD,垂足為E,ED=3BE,點(diǎn)P、Q分別在BD、AD上,則AP+PQ最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過(guò)點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線(xiàn)于點(diǎn)E,直線(xiàn)AB與CE相交于點(diǎn)F.

(1)求證:CF為⊙O的切線(xiàn);
(2)填空:當(dāng)∠CAB的度數(shù)為時(shí),四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖所示,化簡(jiǎn)|a|+ 的結(jié)果是( )

A.﹣2a+b
B.2a﹣b
C.﹣b
D.b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)MN與直線(xiàn)PQ相交于O,∠POM60°,點(diǎn)A在射線(xiàn)OP上運(yùn)動(dòng),點(diǎn)B在射線(xiàn)OM上運(yùn)動(dòng).

(1)如圖1,∠BAO=70°,已知AE、BE分別是∠BAO和∠ABO角的平分線(xiàn),試求出∠AEB的度數(shù).

(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線(xiàn),又DE、CE分別是∠ADC和∠BCD的角平分線(xiàn),點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其值.

(3)在(2)的條件下,在△CDE中,如果有一個(gè)角是另一個(gè)角的2倍,請(qǐng)直接寫(xiě)出∠DCE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案