【題目】已知:如圖,已知⊙O的半徑為1,菱形ABCD的三個(gè)頂點(diǎn)A、B、D在⊙O上,且CD與⊙O相切.
(1)求證:BC與⊙O相切;
(2)求陰影部分面積.
【答案】(1)證明見解析;(2)S陰影=
【解析】試題分析:(1) 依據(jù)SSS證得△OCD≌△OCB,得到∠OBC=∠ODC=90°,所以 BC與⊙O相切;(2) 陰影部分面積等于2S△DOC-S扇形OBD,計(jì)算可得出結(jié)論.
試題解析:(1)連結(jié)OB、OD、OC,
∵ABCD是菱形,∴CD=CB,
∵OC=OC,OD=OB,
∴△OCD≌△OCB,∴∠ODC=∠OBC,
∵CD與⊙O相切,∴OD⊥CD,
∴∠OBC=∠ODC=90°,即OB⊥BC,點(diǎn)B在⊙O上,
∴BC與⊙O相切.
(2) ∵ABCD是菱形,∴∠A=∠C,
∵∠DOB與∠A所對(duì)的弧都是,∴∠DOB=2∠A,
由(1)知∠DOB+∠C=180°,∴∠DOB=120°,∠DOC=60°,
∵OD=1,∴OC=
∴S陰影=2S△DOC-S扇形OBD=2××1×-=-
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出△ABC關(guān)于y軸對(duì)稱的△ABlCl;
(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫出點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】坐標(biāo)系中,△ABC的坐標(biāo)分別是A(-1,2),B(-2,0),C(-1,1),若以原點(diǎn)O為位似中心,將△ABC放大到原來(lái)的2倍得到△A′B′C′,那么落在第四象限的A′的坐標(biāo)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某市第四次黨代會(huì)上,提出了建設(shè)美麗城市決勝全面小康的奮斗目標(biāo),為策應(yīng)市委號(hào)召,學(xué)校決定改造校園內(nèi)的一小廣場(chǎng),如圖是該廣場(chǎng)的平面示意圖,它是由6個(gè)正方形拼成的長(zhǎng)方形,已知中間最小的正方形A的邊長(zhǎng)是1米.
(1)若設(shè)圖中最大正方形B的邊長(zhǎng)是x米,請(qǐng)用含x的代數(shù)式分別表示出正方形F、E和C的邊長(zhǎng);
(2)觀察圖形的特點(diǎn)可知,長(zhǎng)方形相對(duì)的兩邊是相等的(如圖中的MN和PQ).請(qǐng)根據(jù)這個(gè)等量關(guān)系,求出x的值;
(3)現(xiàn)沿著長(zhǎng)方形廣場(chǎng)的四條邊鋪設(shè)下水管道,由甲、乙2個(gè)工程隊(duì)單獨(dú)鋪設(shè)分別需要10天、15天完成.兩隊(duì)合作施工2天后,因甲隊(duì)另有任務(wù),余下的工程由乙隊(duì)單獨(dú)施工,試問(wèn)還要多少天完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過(guò)點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC= b2+ ab.
又∵S四邊形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)
∴ b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
請(qǐng)參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校要求八年級(jí)同學(xué)在課外活動(dòng)中,必須在五項(xiàng)球類(籃球、足球、排球、羽毛球、乒乓球)活動(dòng)中任選一項(xiàng)(只能選一項(xiàng))參加訓(xùn)練,為了了解八年級(jí)學(xué)生參加球類活動(dòng)的整體情況,現(xiàn)以八年級(jí)2班作為樣本,對(duì)該班學(xué)生參加球類活動(dòng)的情況進(jìn)行統(tǒng)計(jì),并繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)a= ,b= ;
(2)該校八年級(jí)學(xué)生共有600人,則該年級(jí)參加足球活動(dòng)的人數(shù)約 人;
(3)該班參加乒乓球活動(dòng)的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)△BDE是直角三角形時(shí),t的值______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市修通一條與省會(huì)城市相連接的高速鐵路,動(dòng)車走高速鐵路線到省會(huì)城市路程是500千米,普通列車走原鐵路線路程是560千米.已知普通列車與動(dòng)車的速度比是2:5,從該市到省會(huì)城市所用時(shí)間動(dòng)車比普通列車少用4.5小時(shí),求普通列車、動(dòng)車的速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com