【題目】已知:如圖,已知⊙O的半徑為1,菱形ABCD的三個(gè)頂點(diǎn)A、B、D在⊙O上,且CD與⊙O相切.

(1)求證:BC與⊙O相切;

(2)求陰影部分面積.

【答案】(1)證明見解析;(2)S陰影

【解析】試題分析:(1) 依據(jù)SSS證得△OCD≌△OCB,得到∠OBC=ODC=90°,所以 BC與⊙O相切;(2) 陰影部分面積等于2SDOC-S扇形OBD,計(jì)算可得出結(jié)論.

試題解析:(1)連結(jié)OB、OD、OC,

ABCD是菱形,∴CD=CB,

OC=OC,OD=OB,

∴△OCD≌△OCB,∴∠ODC=OBC,

CD與⊙O相切,∴ODCD,

∴∠OBC=ODC=90°,即OBBC,點(diǎn)B在⊙O上,

BC與⊙O相切.

(2) ABCD是菱形,∴∠A=C,

∵∠DOB與∠A所對(duì)的弧都是,∴∠DOB=2A,

由(1)知∠DOB+C=180°,∴∠DOB=120°,DOC=60°,

OD=1,OC=

S陰影=2SDOC-S扇形OBD=2××1×

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出△ABC關(guān)于y軸對(duì)稱的△ABlCl;
(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫出點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】坐標(biāo)系中,△ABC的坐標(biāo)分別是A(-1,2),B(-2,0),C(-1,1),若以原點(diǎn)O為位似中心,將△ABC放大到原來(lái)的2倍得到△ABC′,那么落在第四象限的A′的坐標(biāo)是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形的兩邊長(zhǎng)分別為5cm、2cm,則該等腰三角形的周長(zhǎng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某市第四次黨代會(huì)上,提出了建設(shè)美麗城市決勝全面小康的奮斗目標(biāo),為策應(yīng)市委號(hào)召,學(xué)校決定改造校園內(nèi)的一小廣場(chǎng),如圖是該廣場(chǎng)的平面示意圖,它是由6個(gè)正方形拼成的長(zhǎng)方形,已知中間最小的正方形A的邊長(zhǎng)是1米.
(1)若設(shè)圖中最大正方形B的邊長(zhǎng)是x米,請(qǐng)用含x的代數(shù)式分別表示出正方形F、E和C的邊長(zhǎng);
(2)觀察圖形的特點(diǎn)可知,長(zhǎng)方形相對(duì)的兩邊是相等的(如圖中的MN和PQ).請(qǐng)根據(jù)這個(gè)等量關(guān)系,求出x的值;
(3)現(xiàn)沿著長(zhǎng)方形廣場(chǎng)的四條邊鋪設(shè)下水管道,由甲、乙2個(gè)工程隊(duì)單獨(dú)鋪設(shè)分別需要10天、15天完成.兩隊(duì)合作施工2天后,因甲隊(duì)另有任務(wù),余下的工程由乙隊(duì)單獨(dú)施工,試問(wèn)還要多少天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過(guò)點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=SACD+SABC= b2+ ab.
又∵S四邊形ADCB=SADB+SDCB= c2+ a(b﹣a)
b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
請(qǐng)參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校要求八年級(jí)同學(xué)在課外活動(dòng)中,必須在五項(xiàng)球類(籃球、足球、排球、羽毛球、乒乓球)活動(dòng)中任選一項(xiàng)(只能選一項(xiàng))參加訓(xùn)練,為了了解八年級(jí)學(xué)生參加球類活動(dòng)的整體情況,現(xiàn)以八年級(jí)2班作為樣本,對(duì)該班學(xué)生參加球類活動(dòng)的情況進(jìn)行統(tǒng)計(jì),并繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問(wèn)題:

(1)a= ,b= ;

(2)該校八年級(jí)學(xué)生共有600人,則該年級(jí)參加足球活動(dòng)的人數(shù)約 人;

(3)該班參加乒乓球活動(dòng)的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,ABC=60°,BC=2cm,DBC的中點(diǎn),若動(dòng)點(diǎn)E1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)BDE是直角三角形時(shí),t的值______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市修通一條與省會(huì)城市相連接的高速鐵路,動(dòng)車走高速鐵路線到省會(huì)城市路程是500千米,普通列車走原鐵路線路程是560千米.已知普通列車與動(dòng)車的速度比是2:5,從該市到省會(huì)城市所用時(shí)間動(dòng)車比普通列車少用4.5小時(shí),求普通列車、動(dòng)車的速度.

查看答案和解析>>

同步練習(xí)冊(cè)答案