兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,在同一條直線上,連結(jié).
(1)請找出圖2中的全等三角形,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)證明:.
(1)△ABE≌△ACD;(2)
【解析】
試題分析:①可以找出△BAE≌△CAD,條件是AB=AC,DA=EA,∠BAE=∠DAC=90°+∠CAE.
②由①可得出∠DCA=∠ABC=45°,則∠BCD=90°,所以DC⊥BE.
①∵△ABC,△DAE是等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°.
∠BAE=∠DAC=90°+∠CAE,
∴△BAE≌△CAD(SAS).
②由①得△BAE≌△CAD.
∴∠DCA=∠B=45°.
∵∠BCA=45°,
∴∠BCD=∠BCA+∠DCA=90°,
∴DC⊥BE.
考點(diǎn):全等三角形的判定與性質(zhì),等腰三角形的性質(zhì)
點(diǎn)評:熟練掌握等腰直角三角形的性質(zhì),并靈活運(yùn)用等腰直角三角形的性質(zhì)是解答本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com