【題目】如圖,⊙O是△ABC的外接圓,FH是⊙O的切線,切點為F,F(xiàn)H∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.
【答案】
【1】 見解析
【2】 見解析
【3】
【解析】
證明:(1)連接OF
∴FH切·O于點F
∴OF⊥FH ………………………… 1分
∵BC | | FH
∴OF⊥BC ………………………… 2分
∴BF="CF" ………………………… 3分
∴∠BAF=∠CAF
即AF平分∠BAC…………………4分
(2) ∵∠CAF=∠CBF
又∠CAF=∠BAF
∴∠CBF=∠BAF ………………………… 6分
∵BD平分∠ABC
∴∠ABD=∠CBD
∴∠BAF+∠ABD=∠CBF+∠CBD
即∠FBD=∠FDB………………………… 7分
∴BF="DF" ………………………… 8分
(3) ∵∠BFE=∠AFB ∠FBE=∠FAB
∴ΔBEF∽ΔABF………………………… 9分
∴即BF2=EF·AF …………………… 10分
∵EF=4 DE=3 ∴BF="DF" =4+3=7
AF=AD+7
即4(AD+7)=49 解得AD=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E,F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=kx與y=-在同一坐標系內(nèi)的大致圖象是( )
(1) (2)
(3) (4)
A. (1)和(2)
B. (1)和(3)
C. (2)和(3)
D. (2)和(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,經(jīng)過點C的切線交AB的延長線于點E,AD⊥EC交EC的延長線于點D,AD交⊙O于F,F(xiàn)M⊥AB于H,分別交⊙O、AC于M、N,連接MB,BC.
(1)求證:AC平分∠DAE;
(2)若cosM=,BE=1,①求⊙O的半徑;②求FN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c,自變量x與函數(shù)y的對應(yīng)值如表:
下列說法正確的是( )
A. 拋物線的開口向下
B. 當x>-3時,y隨x的增大而增大
C. 二次函數(shù)的最小值是-2
D. 拋物線的對稱軸是x=-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB的頂點坐標分別為O(0,0)、A(3,2)、B(2,0),將這三個頂點的坐標同時擴大到原來的2倍,得到對應(yīng)點D、E、F.
(1)在圖中畫出△DEF;
(2)點E是否在直線OA上?為什么?
(3)△OAB與△DEF______位似圖形(填“是”或“不是”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com