【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于A(2,0),B(﹣4,0)兩點.
(1)求該拋物線的解析式;
(2)若拋物線交y軸于C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由.
(3)在拋物線的第二象限圖象上是否存在一點P,使得△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若不存,請說明理由.
【答案】(1):y=﹣x2﹣2x+8;(2)點Q(﹣1,6)即為所求;(3)點P的坐標為(﹣2,8).
【解析】
試題分析:(1)直接利用待定系數(shù)求出二次函數(shù)解析式即可;
(2)首先求出直線BC的解析式,再利用軸對稱求最短路線的方法得出答案;
(3)根據(jù)S△BPC=S四邊形BPCO﹣S△BOC=S四邊形BPCO﹣16,得出函數(shù)最值,進而求出P點坐標即可.
解:(1)將A(2,0),B(﹣4,0)代入得:
,
解得:,
則該拋物線的解析式為:y=﹣x2﹣2x+8;
(2)如圖1,點A關于拋物線對稱軸的對稱點為點B,設直線BC的解析式為:y=kx+d,
將點B(﹣4,0)、C(0,8)代入得:
,
解得:,
故直線BC解析式為:y=2x+8,
直線BC與拋物線對稱軸 x=﹣1的交點為Q,此時△QAC的周長最。
解方程組得,
則點Q(﹣1,6)即為所求;
(3)如圖2,過點P作PE⊥x軸于點E,
P點(x,﹣x2﹣2x+8)(﹣4<x<0)
∵S△BPC=S四邊形BPCO﹣S△BOC=S四邊形BPCO﹣16
若S四邊形BPCO有最大值,則S△BPC就最大
∴S四邊形BPCO=S△BPE+S直角梯形PEOC
=BEPE+OE(PE+OC)
=(x+4)(﹣x2﹣2x+8)+(﹣x)(﹣x2﹣2x+8+8)
=﹣2(x+2)2+24,
當x=﹣2時,S四邊形BPCO最大值=24,
∴S△BPC最大=24﹣16=8,
當x=﹣2時,﹣x2﹣2x+8=8,
∴點P的坐標為(﹣2,8).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,∠ABC=90°,利用直尺和圓規(guī),根據(jù)要求作圖(不寫作法,保留作圖痕跡),并解決下面的問題.
(1)作AC的垂直平分線,分別交AC、BC于點D、E;
(2)若AB=12,BE=5,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且始終保持AD=CE.連接DE、DF、EF.
(1)求證:△ADF≌△CEF;
(2)試證明△DFE是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某報亭老板以每份0.5元的價格從報社購進某種報紙500份,以每份0.8元的價格銷售x份﹙x<500﹚,未銷售完的報紙又以每份0.1元的價格由報社收回。這次買賣中該老板賺錢____元。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是∠ABC平分線,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,則DE的長是( )
A.4.8cm B.4.5cm C.4cm D.2.4cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).
(1)把△ABC向上平移5個單位后得到對應的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;
(2)以原點O為對稱中心,再畫出與△A1B1C1關于原點O對稱的△A2B2C2,并寫出點C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一組數(shù)據(jù):2,x,1,3,6,若這組數(shù)據(jù)平均數(shù)是3,則中位數(shù)是__,眾數(shù)是__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com