分析 作AD⊥BC于D,如圖,根據(jù)等腰三角形的性質(zhì)得BD=CD=$\frac{1}{2}$BC,∠B=∠C,
(1)當(dāng)BC=$\sqrt{2}$時(shí),則BD=$\frac{\sqrt{2}}{2}$,在Rt△ABD中利用余弦的定義可求出∠B=45°,所以∠C=45°,然后根據(jù)三角形內(nèi)角和求出∠A=90°;
(2)當(dāng)BC=$\sqrt{3}$時(shí),計(jì)算方法與(1)一樣.
解答 解:作AD⊥BC于D,如圖,
∵AB=AC=1,
∴BD=CD=$\frac{1}{2}$BC,∠B=∠C,
(1)當(dāng)BC=$\sqrt{2}$時(shí),BD=$\frac{\sqrt{2}}{2}$,
在Rt△ABD中,∵cosB=$\frac{BD}{AB}$=$\frac{\frac{\sqrt{2}}{2}}{1}$=$\frac{\sqrt{2}}{2}$,
∴∠B=45°,
∴∠C=45°,∠A=90°;
(2)當(dāng)BC=$\sqrt{3}$時(shí),BD=$\frac{\sqrt{3}}{2}$,
在Rt△ABD中,∵cosB=$\frac{BD}{AB}$=$\frac{\sqrt{3}}{2}$,
∴∠B=30°,
∴∠C=30°,∠A=120°.
點(diǎn)評(píng) 本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.也考查了等腰三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 由2x-3=1,得2x=1-3 | B. | 由-2x=1,得x=-2 | ||
C. | 由2(x-3)=1,得2x-3=1 | D. | 由8-x=x-5,得-x-x=-5-8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com