如圖,正方形ABCD的邊長(zhǎng)為1,E、F分別是邊BC和CD上的動(dòng)點(diǎn)(不與正方形的頂點(diǎn)重合),不管E、F怎樣動(dòng),始終保持AE⊥EF.設(shè)BE=x,DF=y,則y是x的函數(shù),函數(shù)關(guān)系式是( )

A.y=x+1
B.y=x-1
C.y=x2-x+1
D.y=x2-x-1
【答案】分析:易證△ABE∽△ECF,根據(jù)相似三角形對(duì)應(yīng)邊的比相等即可求解.
解答:解:∵∠BAE和∠EFC都是∠AEB的余角.
∴∠BAE=∠FEC.
∴△ABE∽△ECF
那么AB:EC=BE:CF,
∵AB=1,BE=x,EC=1-x,CF=1-y.
∴AB•CF=EC•BE,
即1×(1-y)=(1-x)x.
化簡(jiǎn)得:y=x2-x+1.
故選C.
點(diǎn)評(píng):本題結(jié)合了正方形和相似三角形的性質(zhì)考查了二次函數(shù)關(guān)系式.根據(jù)條件得出形似三角形,用未知數(shù)表示出相關(guān)線段是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案