分析 (1)由BC2=BD•BA,∠B=∠B,得到:△BCD∽△BAC,可得∠BCD=∠A.接下來(lái)分兩種情形,解決這個(gè)問(wèn)題.
(2)充分利用兩個(gè)相似三角形對(duì)應(yīng)邊成比例,解決問(wèn)題.
解答 解:(1)∵BC=24,BD=16,AD=20,
∴BC2=BD•BA,
∴$\frac{BC}{BD}=\frac{BA}{BC}$,∵∠B=∠B,
∴△BCD∽△BAC,
∴∠BCD=∠A
∵△ADE與△BCD相似,
情形①當(dāng)∠AED=∠B,∵∠A=∠DCB,△ADE∽△BCD
∵∠AED=∠B,∠A=∠A
∴△ADE∽△ACB,∴$\frac{AD}{AC}=\frac{AE}{AB}$,
即$\frac{20}{45}=\frac{AE}{36}$,
∴AE=16,
情形②的當(dāng)∠ADE=∠B時(shí),△ADE∽△CBD,
∴DE∥BC,
∴$\frac{AD}{AB}=\frac{AE}{AC}$,
即$\frac{20}{36}=\frac{AE}{45}$,
∴AE=25,
綜上所述:AE的長(zhǎng)是16或25;
(2)①如圖當(dāng)△ADE2∽△CBD時(shí),∵∠ADE=∠B,∴$\frac{AD}{DB}=\frac{AE2}{E2C}=\frac{20}{16}=\frac{5}{4}$,
設(shè)AE2=5K,E2C=4K,由$△BCD∽△BAC得到:\frac{DC}{AC}=\frac{BD}{BC}=\frac{2}{3}$,∴DC=6K,
∵$\frac{DE2}{BC}=\frac{AD}{AB},得到:DE2=\frac{40}{3}$,
∵DE2+E2C+CD=75,
∴6K+4K+$\frac{40}{3}=75$,
∴K=$\frac{37}{6}$,AC=9K=$\frac{111}{2}$
②如圖當(dāng)△ADE1∽△CDB時(shí),∵∠A=∠A,∠AE1D=∠B,∴△ADE1∽△ACB,
∴$\frac{AD}{AC}=\frac{AE1}{AB}$,由②可知:CD:AC=2:3,設(shè)CD=2K,AC=3K,
則易知:AE1=$\frac{240}{K}$,CE1=3K-$\frac{240}{K}$,由:$\frac{AD}{AC}=\frac{DE1}{BC},得到:DE1=\frac{160}{K}$,
∵DE1+E1C+CD=75,
∴$\frac{160}{K}+2k+3K-\frac{240}{K}=75$,
整理得到:K2-15K-16=0,
K1=16,(K2=-1舍棄),
∴AC=3K=48.
點(diǎn)評(píng) 本題目考查了相似三角形的性質(zhì)和判斷,由數(shù)量關(guān)系得到相似關(guān)系,是數(shù)形結(jié)合的好題目.同時(shí)考查了分類思想,培養(yǎng)嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思考習(xí)慣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com