如圖,四邊形ABCD中,AB=AC=AD,BC=CD,銳角∠BAC的角平分線AE交BC于點(diǎn)E,AF是CD邊上的中線,且PC⊥CD與AE交于點(diǎn)P,QC⊥BC與AF交于點(diǎn)Q.求證:四邊形APCQ是菱形.

【答案】分析:等腰三角形三線合一,可得出∠AEC和∠AFC都是直角,這樣用角的等量代換可證明∠FAC和∠PCA相等,可證明AQ∥PC,同理AP∥CQ,所以可先證明是平行四邊形,然后根據(jù)鄰邊相等證明是菱形.
解答:證明:∵AC=AD,AF是CD邊上的中線,
∴∠AFC=90°,
∴∠ACF+∠CAF=90°,
∵∠ACF+∠PCA=90°,
∴∠PCA=∠CAF,
∴PC∥AQ,
同理:AP∥QC,
∴四邊形APCQ是平行四邊形.
∵AF∥CP,AE∥CQ,
∴∠EPC=∠PAF=∠FQC,
∵AB=AC,AE平分∠BAC,
∴CE=BE=CB(等腰三角三線合一),
∵AF是CD邊上的中線,
∴CF=CD,
∵CB=DC,
∴CE=CF,
∵PC⊥CD,QC⊥BC,
∴∠ECP+∠PCQ=∠QCF+∠PCQ=90°,
∴∠PCE=∠QCF,
∴△PEC≌△QFC(AAS),
∴PC=QC,
∴四邊形APCQ是菱形.
點(diǎn)評(píng):本題考查菱形的判定定理,一組鄰邊相等的平行四邊形是菱形,以及全等三角形的判定和性質(zhì),等腰三角形的判定等知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案