【題目】如圖,在正方形ABCD中,E是BC邊上的一點(diǎn),BE=4,EC=8,將正方形邊AB延AE折疊刀AF,延長(zhǎng)EF交DC于G,連接AG,現(xiàn)在有如下結(jié)論:①∠EAG=45°;②GC=CF;③FC∥AG;④S△GFC=14.4;其中結(jié)論正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】C
【解析】
選項(xiàng)①正確.證明∠GAF=∠GAD,∠EAB=∠EAF即可.選項(xiàng)②錯(cuò)誤.可以證明DG=GC=FG,顯然△GFC不是等邊三角形,可得結(jié)論.選項(xiàng)③正確.證明CF⊥DF,AG⊥DF即可.選項(xiàng)④正確.證明FG:EG=3:5,求出△ECG的面積即可.
解:如圖,連接DF.
∵四邊形ABCD是正方形,
∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,
由折疊可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=4,∠BAE=∠EAF,
∵∠AFG=∠ADG=90°,AG=AG,AD=AF,
∴Rt△AGD≌Rt△AGF(HL),
∴∠GAF=∠GAD,
∴∠EAG=∠EAF+∠GAF=(∠BAF+∠DAF)=45°,故①正確,
設(shè)GD=GF=x,
在Rt△ECG中,∵EG2=EC2+CG2,
∴(4+x)2=82+(12-x)2,
∴x=6,
∵CD=BC=BE+EC=12,
∴DG=CG=6,
∴FG=GC,
易知△GFC不是等邊三角形,顯然FG≠FC,故②錯(cuò)誤,
∵GF=GD=GC,
∴∠DFC=90°,
∴CF⊥DF,
∵AD=AF,GD=GF,
∴AG⊥DF,
∴CF∥AG,故③正確,
∵S△ECG=×6×8=24,FG:FE=6:4=3:2,
∴FG:EG=3:5,
∴S△GFC=×24==14.4,故④正確,
故①③④正確,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相較于點(diǎn)F.
(1)求證:四邊形BDFC是平行四邊形;
(2)若△BCD是等腰三角形,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線( a≠0)經(jīng)過原點(diǎn),頂點(diǎn)為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時(shí),求拋物線的解析式;
(2)若拋物線(t≠0)也經(jīng)過A點(diǎn),求a與t之間的關(guān)系式;
(3)當(dāng)點(diǎn)A在拋物線上,且-2≤h<1時(shí),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(0,4),動(dòng)點(diǎn)A以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)O出發(fā)沿x軸的正方向運(yùn)動(dòng),M是線段AC的中點(diǎn).將線段AM以點(diǎn)A為中心,沿順時(shí)針方向旋轉(zhuǎn)90°,得到線段AB.過點(diǎn)B作x軸的垂線,垂足為E,過點(diǎn)C作y軸的垂線,交直線BE于點(diǎn)D.運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),求t的值;
(2)設(shè)△BCD的面積為S,當(dāng)t為何值時(shí),S=?
(3)連接MB,當(dāng)MB∥OA時(shí),如果拋物線y=ax2﹣10ax的頂點(diǎn)在△ABM內(nèi)部(不包括邊),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在讀書月活動(dòng)中,學(xué)校準(zhǔn)備購(gòu)買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根
據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m= ,n= ;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計(jì)劃購(gòu)買課外讀物6000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀物多少冊(cè)比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是內(nèi)角的平分線,是外角的平分線,是外角的平分線,以下結(jié)論不正確的是( )
A.B.
C.D.平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH的形狀是_______,證明你的結(jié)論.
(2)連接四邊形ABCD的對(duì)角線AC與BD,當(dāng)AC與BD滿足____條件時(shí),四邊形EFGH是矩形;(只需要寫結(jié)論,不需證明)
(3)連接四邊形ABCD的對(duì)角線AC與BD,當(dāng)AC與BD滿足______條件時(shí),四邊形EFGH是菱形.(只需要寫結(jié)論,不需證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com