12.釣魚(yú)島是中國(guó)的固有領(lǐng)土,位于中國(guó)東海,面積為4400000m2,數(shù)據(jù)4400000用科學(xué)記數(shù)法表示為(  )
A.4.4×106B.44×105C.4×106D.0.44×107

分析 科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).

解答 解:將數(shù)據(jù)4400000用科學(xué)記數(shù)法表示為:4.4×106
故選A.

點(diǎn)評(píng) 本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某學(xué)校準(zhǔn)備開(kāi)展“陽(yáng)光體育活動(dòng)”,決定開(kāi)設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過(guò)調(diào)查獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問(wèn)題:
(1)這次活動(dòng)一共調(diào)查了250名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于108度;
(4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)約是480人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,直線(xiàn)AB與坐標(biāo)軸分別交于A(-2,0),B(0,1)兩點(diǎn),與反比例函數(shù)的圖象在第一象限交于點(diǎn)C(4,n),求一次函數(shù)和反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.不等式組$\left\{\begin{array}{l}{x+5>0}\\{2x<6}\end{array}\right.$解集是( 。
A.x>-5B.x<3C.-5<x<3D.x<5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列運(yùn)算正確的是( 。
A.a2+a2=a4B.a5-a3=a2C.a2•a2=2a2D.(a52=a10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體是( 。
A.球體B.圓錐C.棱柱D.圓柱

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

4.武當(dāng)山機(jī)場(chǎng)于2016年2月5日正式通航以來(lái),截至5月底,旅客吞吐量近92000人次,92000用科學(xué)記數(shù)法表示為9.2×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在學(xué)校組織的義務(wù)植樹(shù)活動(dòng)中,甲、乙兩組各四名同學(xué)的植樹(shù)棵數(shù)如下,甲組:9,9,11,10;乙組:9,8,9,10;分別從甲、乙兩組中隨機(jī)選取一名同學(xué),則這兩名同學(xué)的植樹(shù)總棵數(shù)為19的概率$\frac{5}{16}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn),再求值,($\frac{{x}^{2}}{x-1}$-x+1)÷$\frac{4{x}^{2}-4x+1}{1-x}$,其中x=$\sqrt{5}$+$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案