【題目】已知等邊△ABC和⊙M.
(1)如圖l,若⊙M與BA的延長(zhǎng)線AK及邊AC均相切,求證: AM∥BC;
(2)如圖2,若⊙M與BA的延長(zhǎng)線AK、BC的延長(zhǎng)線CF及邊AC均相切,求證:四邊形ABCM是平行四邊形.
【答案】證明見(jiàn)解析
【解析】證明:(1)連接AM,
∵△ABC是等邊三角形,∴∠B=∠BAC=60°。
∴∠KAC=180°﹣∠BAC=120°。
∵⊙M與BA的延長(zhǎng)線AK及邊AC均相切,
∴∠KAM=∠CAM=∠KAC=×120°=60°。
∴∠KAM=∠B=60°。∴AM∥BC。
(2)∵△ABC是等邊三角形,∴∠B=∠BAC=∠ACB=60°。
∴∠KAC=180°﹣∠BAC=120°,∠FCA=120°。
∵⊙M與BA的延長(zhǎng)線AK、BC的延長(zhǎng)線CF及邊AC均相切,
∴∠KAM=∠CAM=∠KAC=×120°=60°,
∠FCM=∠ACM=∠FCA=×120°=60°。
∴∠KAM=∠B=60°,∠FCM=∠B=60°。
∴AM∥BC,CM∥AB,∴四邊形ABCM是平行四邊形。
(1)由等邊△ABC,即可得∠B=∠BAC=60°,求得∠KAC=120°,又由⊙M與BA的延長(zhǎng)線AK及邊AC均相切,利用切線長(zhǎng)定理,即可得∠KAM=60°,然后根據(jù)同位角相等,兩直線平行,證得AM∥BC。
(2)根據(jù)(1),易證得AM∥BC,CM∥AB,從而可證得四邊形ABCM是平行四邊形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)字0.0000072用科學(xué)記數(shù)法表示正確的是( )
A.7.2×106B.7.2×107C.7.2×10﹣6D.7.2×10﹣7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等腰三角形,腰上的高為8cm,面積為40cm2,則該三角形的周長(zhǎng)是_______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】①如圖1,AB∥CD,則∠A +∠E +∠C=180°;②如圖2,AB∥CD,則∠E =∠A +∠C;③如圖3,AB∥CD,則∠A +∠E-∠1=180° ; ④如圖4,AB∥CD,則∠A=∠C +∠P.以上結(jié)論正確的個(gè)數(shù)是( )
A. 、1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組式子中,兩個(gè)單項(xiàng)式是同類項(xiàng)的是()
A. 2a與a2 B. 5xy2與y2x C. ab與a2b D. 0.3x2y與0.3a2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,各內(nèi)角的平分線分別相交于點(diǎn)E,F,G,H.
(1)求證:△ABG≌△CDE;
(2)猜一猜:四邊形EFGH是什么樣的特殊四邊形?證明你的猜想;
(3)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)今年8月的產(chǎn)值為a萬(wàn)元, 9月份比8月份增加了10%,10月份比9月份增加了15%,則10月份的產(chǎn)值是( )
A.a(1 10%)(1 15%)萬(wàn)元B.(a 10%)(a 15%)萬(wàn)元
C.a(1 90%)(1 85%)萬(wàn)元D.a(1 10% 15%)萬(wàn)元
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com