如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A, 與y軸交于點(diǎn)B, 且
OA = 3,AB = 5.點(diǎn)P從點(diǎn)O出發(fā)沿OA以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),到達(dá)點(diǎn)A后立刻以原來的速度沿AO返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng).伴隨著P、Q的運(yùn)動(dòng),DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB-BO-OP于點(diǎn)E.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng),點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)求直線AB的解析式;
(2)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,求△APQ的面積S與t之間的函數(shù)關(guān)系式(不必寫出t的取值
范圍);
(3)在點(diǎn)E從B向O運(yùn)動(dòng)的過程中,四邊形QBED能否成為直角梯形?若能,請(qǐng)求出t的值;若不
能,請(qǐng)說明理由;
(4)當(dāng)DE經(jīng)過點(diǎn)O時(shí),請(qǐng)你直接寫出t的值.
解:(1)在Rt△AOB中,OA = 3,AB = 5,由勾股定理得.
∴A(3,0),B(0,4).
設(shè)直線AB的解析式為.
∴ 解得
|
∵ AQ = OP= t,∴.
由△AQF∽△ABO,得.
∴.∴.
∴,
∴.
(3)四邊形QBED能成為直角梯形.
①如圖,當(dāng)DE∥QB時(shí),
∵DE⊥PQ,
∴PQ⊥QB,四邊形QBED是直角梯形.
此時(shí)∠AQP=90°.
由△APQ ∽△ABO,得.
∴.
解得.
②如圖,當(dāng)PQ∥BO時(shí),
∵DE⊥PQ,
∴DE⊥BO,四邊形QBED是直角梯形.
此時(shí)∠APQ =90°.
由△AQP ∽△ABO,得
即.
解得.
(4)或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com