(2007•常州)已知,如圖,延長△ABC的各邊,使得BF=AC,AE=CD=AB,順次連接D,E,F(xiàn),得到△DEF為等邊三角形.求證:
(1)△AEF≌△CDE;
(2)△ABC為等邊三角形.
【答案】分析:(1)關(guān)鍵是證出CE=AF,可由AE=AB,AC=BF,兩兩相加可得.再結(jié)合已知條件可證出△AEF≌△CDE.
(2)有(1)中的全等關(guān)系,可得出∠AFE=∠CED,再結(jié)合△DEF是等邊三角形,可知∠DEF=60°,從而得出∠BAC=60°,同理可得∠ACB=60°,那么∠ABC=60°.因而△ABC是等邊三角形.
解答:證明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量加等量和相等).(1分)
∵△DEF是等邊三角形(已知),
∴EF=DE(等邊三角形的性質(zhì)).(2分)
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).(4分)

(2)由△AEF≌△CDE,得∠FEA=∠EDC(對應(yīng)角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代換),
△DEF是等邊三角形(已知),
∴∠DEF=60°(等邊三角形的性質(zhì)),
∴∠BCA=60°(等量代換),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角對等邊).(6分)
∴△ABC是等邊三角形(等邊三角形的判定).(7分)
點(diǎn)評:本題利用了等量加等量和相等,全等三角形的判定和性質(zhì),還有三角形的外角等不相鄰的兩個(gè)內(nèi)角之和,等邊三角形的判定(三個(gè)角都是60°,那么就是等邊三角形).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:填空題

(2007•常州)已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(0,-2),B(1,0),則b=    ,k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年江蘇省常州市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•常州)已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(0,-2),B(1,0),則b=    ,k=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:填空題

(2007•常州)已知扇形的半徑為2cm,面積是πcm2,則扇形的弧長是    cm,扇形的圓心角為    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

(2007•常州)已知,如圖,在平行四邊形ABCD中,∠BAD的平分線交BC邊于點(diǎn)E.
求證:BE=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(16)(解析版) 題型:解答題

(2007•常州)已知⊙O1經(jīng)過A(-4,2),B(-3,3),C(-1,-1),O(0,0)四點(diǎn),一次函數(shù)y=-x-2的圖象是直線l,直線l與y軸交于點(diǎn)D.
(1)在右邊的平面直角坐標(biāo)系中畫出⊙O1,直線l與⊙O1的交點(diǎn)坐標(biāo)為______;
(2)若⊙O1上存在整點(diǎn)P(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),使得△APD為等腰三角形,所有滿足條件的點(diǎn)P坐標(biāo)為______;
(3)將⊙O1沿x軸向右平移______

查看答案和解析>>

同步練習(xí)冊答案