如圖所示,在平面直角坐標系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點C在y軸的負半軸上,tan∠ACO=,點P在線段OC上,且PO、PC的長(PO<PC)是關于x的方程x2-(2k+4)x+8k=0的兩根.

(1)求AC、BC的長;

(2)求P點坐標;

(3)在x軸上是否存在點Q,使以點A、C、P、Q為頂點的四邊形是梯形?若存在,請直接寫出直線PQ的解析式;若不存在,請說明理由.

答案:
解析:

  解:(1)∵∠ACB=90°,CO⊥AB

  ∴∠ACO=∠ABC

  ∴tan∠ABC=

  Rt△ABC中,設AC=3a,BC=4a.

  則AB=5a,5a=25

  ∴a=5

  ∴AC=15,BC=20

  (2)∵S△ABCAC·BC=OC·AB

  ∴OC=12

  ∴PO+PC=4+2k=12

  ∴k=4

  ∴原方程可化為x2-12x+32=0

  解得x1=4,x2=8

  ∵PO<PC

  ∴PO=4,∴P(0,-4)

  (3)存在,直線PQ解析式為


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖所示,在平面直角坐標系中,一次函數(shù)y=kx+1的圖象與反比例函數(shù)y=
9x
的圖象在第一象限相精英家教網交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數(shù)的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、如圖所示,在平面直角坐標系中,點A、B的坐標分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉90°得到月牙②,則點A的對應點A′的坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在平面直角坐標系中,一顆棋子從點P處開始依次關于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關于點A的對稱點M處,第二次從點M跳到關于點B的對稱點N處,第三次從點N跳到關于點C的對稱點處,…如此下去.
(1)在圖中標出點M,N的位置,并分別寫出點M,N的坐標:
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,在平面直角坐標系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數(shù)關系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為P',請直接寫出P'點坐標,并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習冊答案