【題目】如圖,在△ABC中,AB=BC=4,AO=BO,P是射線CO上的一個動點,∠AOC=60°,則當△PAB為直角三角形時,AP的長為 .
科目:初中數學 來源: 題型:
【題目】下列描述一次函數y=-2x+5圖象性質錯誤的是( )
(A)y隨x的增大而減小
(B)直線經過第一、二、四象限
(C)直線從左到右是下降的
(D)直線與x軸交點坐標是(0,5)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲、乙兩動點分別從正方形ABCD的頂點A、C同時沿正方形的邊開始移動,甲點依順時針方向環(huán)行,乙點依逆時針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在邊 上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F.
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過坐標原點O和x軸上另一點E,頂點M的坐標為(2,4);矩形ABCD的頂點A與點O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3.
(1)求該拋物線所對應的函數關系式;
(2)將矩形ABCD以每秒1個單位長度的速度從如圖所示的位置沿x軸的正方向勻速平行移動,同時一動點P也以相同的速度從點A出發(fā)向B勻速移動,設它們運動的時間為t秒(0≤t≤3),直線AB與該拋物線的交點為N(如圖2所示).
①當t=時,判斷點P是否在直線ME上,并說明理由;
②設以P、N、C、D為頂點的多邊形面積為S,試問S是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于點A,點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(1)求拋物線的解析式及點D的坐標;
(2)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;
(3)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在平面內,以線段MN為對角線作正方形MPNQ,請直接寫出點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com