【題目】計算23的結(jié)果是

【答案】8
【解析】解:23=2×2×2=8. 所以答案是:8
【考點精析】解答此題的關(guān)鍵在于理解有理數(shù)的乘方的相關(guān)知識,掌握有理數(shù)乘方的法則:1、正數(shù)的任何次冪都是正數(shù)2、負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并解決相關(guān)的問題.
按照一定順序排列著的一列數(shù)稱為數(shù)列,排在第一位的數(shù)稱為第1項,記為a1 , 依此類推,排在第n位的數(shù)稱為第n項,記為an
一般地,如果一個數(shù)列從第二項起,每一項與它前一項的比等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0).如:數(shù)列1,2,4,8,…為等比數(shù)列,其中a1=1,公比為q=2.
則:
(1)等比數(shù)列3,6,12,…的公比q為 , 第6項是
(2)如果一個數(shù)列a1 , a2 , a3 , a4 , …是等比數(shù)列,且公比為q,那么根據(jù)定義可得到: =q, =q, =q,… =q.
所以:a2=a1q,a3=a2q=(a1q)q=a1q2 , a4=a3q=(a1q2)q=a1q3 , …
由此可得:an=(用a1和q的代數(shù)式表示).
(3)對等比數(shù)列1,2,4,…,2n﹣1求和,可采用如下方法進(jìn)行:
設(shè)S=1+2+4+…+2n﹣1 ①,
則2S=2+4+…+2n ②,
②﹣①得:S=2n﹣1
利用上述方法計算:1+3+9+…+3n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以邊長為20cm的正三角形紙板的各頂點為端點,在各邊上分別截取4cm長的六條線段,過截得的六個端點作所在邊的垂線,形成三個有兩個直角的四邊形.把它們沿圖中 虛線剪掉,用剩下的紙板折成一個底為正三角形的無蓋柱形盒子,則它的容積為 cm3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用“☆”定義一種新運(yùn)算:對于任意有理數(shù)a和b,規(guī)定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若( ☆3)☆(- )=8,求a的值;
(3)若2☆x=m,( x)☆3=n(其中x為有理數(shù)),試比較m,n的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果方程 的解與方程4x-(3a+1)=6x+2a-1的解相同,求式子 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E是AD的中點,F(xiàn)是BA延長線上的一點,AF=AB,已知△ABE≌△ADF.

(1)在圖中,可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置;
(2)線段BE與DF有什么關(guān)系?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個運(yùn)算程序的示意圖,若開始輸入的x值為81,我們看到第一次輸出的結(jié)果為27,第二次輸出的結(jié)果為9,…,第2017次輸出的結(jié)果為( )

A.1
B.3
C.9
D.27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過點O作射線OC,使∠BOC=120°,將一直角三角形的直角頂點放在點O處, 一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O逆時針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,問:直線ON是否平分∠AOC?請說明理由;
(2)將圖1中的三角板繞點O按每秒6°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為多少秒?(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(x+3)(x﹣3)=

查看答案和解析>>

同步練習(xí)冊答案