【題目】如圖,已知直線yx,點(diǎn)A1的坐標(biāo)為(1,0),過點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1的長(zhǎng)為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2的長(zhǎng)為半徑畫弧交x軸于點(diǎn)A3,按此做法進(jìn)行下去,點(diǎn)A6的坐標(biāo)為____________.

【答案】(32,0).

【解析】

試題分析:本題需先求出OA1和OA2的長(zhǎng),再根據(jù)題意得出OAn=2n-1,求出OA6的長(zhǎng)等于26-1,即可求出A6的坐標(biāo).

試題解析:點(diǎn)A1的坐標(biāo)是(1,0)

OA1=1

點(diǎn)B1在直線y=x上

A1B1=

OB1=2

OA2=2

得出OA3=23-1=22=4

OA6=26-1=25=32

A6的坐標(biāo)是(32,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意, 補(bǔ)全解題過程:

如圖,∠AOB=90°OE平分∠AOC,OF平分∠BOC 求∠EOF的度數(shù).

解:因?yàn)?/span>OE平分∠AOC,OF平分∠BOC

所以∠EOC =AOC,∠FOC =________.

所以∠EOF =EOC-________

=(AOC-_______)

= ________

=_________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過學(xué)習(xí)絕對(duì)值,我們知道的幾何意義是數(shù)軸上表示數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)與原點(diǎn)的距離,如:表示在數(shù)軸上的對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離.,表示在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離,類似的,,即表示、在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離;一般地,點(diǎn),在數(shù)軸上分別表示數(shù)、,那么之間的距離可表示為.

請(qǐng)根據(jù)絕對(duì)值的幾何意義并結(jié)合數(shù)軸解答下列問題:

1)數(shù)軸上表示的兩點(diǎn)之間的距離是___;數(shù)軸上兩點(diǎn)的距離為,點(diǎn)表示的數(shù)是,則點(diǎn)表示的數(shù)是___.

2)點(diǎn),,在數(shù)軸上分別表示數(shù)、、,那么到點(diǎn).點(diǎn)的距離之和可表示為_ (用含絕對(duì)值的式子表示);若到點(diǎn).點(diǎn)的距離之和有最小值,則的取值范圍是_ __.

3的最小值為_ __.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏師傅是一名徒步運(yùn)動(dòng)的愛好者,他用手機(jī)軟件記錄了某個(gè)月(30天)每天徒步的步數(shù)(單位:萬步),將記錄結(jié)果繪制成了如圖所示的統(tǒng)計(jì)圖.在這組徒步數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是(

A. 1.2,1.3 B. 1.4,1.3 C. 1.4,1.35 D. 1.3,1.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,,點(diǎn)P在以斜邊AB為直徑的半圓上,MPC的中點(diǎn).當(dāng)點(diǎn)P沿半圓從點(diǎn)A運(yùn)動(dòng)至點(diǎn)B時(shí),點(diǎn)M運(yùn)動(dòng)的路徑長(zhǎng)是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為邊長(zhǎng)為2的等邊三角形ABC內(nèi)任意一點(diǎn),連接PA、PB、PC,過P點(diǎn)分別作BC、ACAB邊的垂線,垂足分別為D、E、F,則PD+PE+PF等于( 。

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一個(gè)直角三角形ACB(ACB=90°)繞著頂點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長(zhǎng)CF與DG交于點(diǎn)H.

(1)求證:CF=DG;

(2)求出FHG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,3),且此拋物線的頂點(diǎn)坐標(biāo)為M(-1,4).

(1)求此拋物線的解析式;

(2)設(shè)點(diǎn)D為已知拋物線對(duì)稱軸上的任意一點(diǎn),當(dāng)ACD面積等于6時(shí),求點(diǎn)D的坐標(biāo);

(3)點(diǎn)P在線段AM上,當(dāng)PCy軸垂直時(shí),過點(diǎn)P軸的垂線,垂足為E,將PCE沿直線CB翻折,使點(diǎn)P的對(duì)應(yīng)點(diǎn)P'P、E、C處在同一平面內(nèi),請(qǐng)求出P'坐標(biāo),并判斷點(diǎn)P'是否在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,若順次連接四邊形ABCD各邊中點(diǎn)得的四邊形EFGH是矩形,則稱原四邊形ABCD為“中母矩形”即若四邊形的對(duì)角線互相垂直,那么這個(gè)四邊形稱為“中母矩形”.

1)如圖2,在直角坐標(biāo)系xOy中,已知A4,0),B14),C4,6),請(qǐng)?jiān)诟顸c(diǎn)上標(biāo)出D點(diǎn)的位置(只標(biāo)一點(diǎn)即可),使四邊形ABCD是中母矩形.并寫出點(diǎn)D的坐標(biāo).

2)如圖3,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDEACFG,連接CEBG相交于點(diǎn)O,試判斷四邊形BEGC是中母矩形?說明理由.

3)如圖4,在RtABC中,AB8,BC6,E是斜邊AC的中點(diǎn),F是直角邊AB的中點(diǎn),P是直角邊BC上一動(dòng)點(diǎn),試探究:當(dāng)PC_____時(shí),四邊形BPEF是中母矩形?(直角三角形中,30°角所對(duì)的直角邊是斜邊的一半)

查看答案和解析>>

同步練習(xí)冊(cè)答案