如圖,在△ABC外分別作等邊三角形ADB和等邊三角形AEC,請(qǐng)你通過(guò)剪紙操作后回答:

(1)△ACE能旋轉(zhuǎn)到△ADB的位置嗎?

(2)△DBC能旋轉(zhuǎn)到△ECB的位置嗎?

(3)△ABE能旋轉(zhuǎn)到△ADC的位置嗎?

答案:
解析:

(1)不能;(2)不能;(3)能


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面內(nèi),先將一個(gè)多邊形以點(diǎn)O為位似中心放大或縮小,使所得多邊形與原多邊形對(duì)應(yīng)線段的比為k,并且原多邊形上的任一點(diǎn)P,它的對(duì)應(yīng)點(diǎn)P′在線段OP或其延長(zhǎng)線上;接著將所得多邊形以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)一個(gè)角度θ,這種經(jīng)過(guò)和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點(diǎn)O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
(1)填空:
①如圖1,將△ABC以點(diǎn)A為旋轉(zhuǎn)相似中心,放大為原來(lái)的2倍,再逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,這個(gè)旋轉(zhuǎn)相似變換記為A(
 
,
 
);
②如圖2,△ABC是邊長(zhǎng)為1cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(
3
,90°),得到△ADE,則線段BD的長(zhǎng)為
 
cm;
(2)如圖3,分別以銳角三角形ABC的三邊AB,BC,CA為邊向外作正方形ADEB,BFGC,CHIA,點(diǎn)O1,O2,O3分別是這三個(gè)正方形的對(duì)角線交點(diǎn),試分別利用△AO1O3與△ABI,△CIB與△CAO2之間的關(guān)系,運(yùn)用旋轉(zhuǎn)相似變換的知識(shí)說(shuō)明線段O1O3與AO2之間的關(guān)系.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

24、閱讀材料,并回答下列問(wèn)題:
如圖1,以AB為軸,把△ABC翻折180°,可以變換到△ABD的位置;如圖2,把△ABC沿射線AC平移,可以變換到△DEF的位置.像這樣,其中的一個(gè)三角形是另一個(gè)三角形經(jīng)翻折、平移等方法變換成的,這種只改變位置,不改變形狀大小的圖形變換,叫三角形的全等變換.
(1)請(qǐng)你寫(xiě)出一種全等變換的方法(除翻折、平移外).
旋轉(zhuǎn)
;
(2)如圖2,△ABC沿射線AC平移到△DEF,若平移的距離為2,且AC=3,則DC=
1
;
(3)如圖3,D、E分別是△ABC的邊AB、AC上的點(diǎn),把△ADE沿DE翻折,當(dāng)點(diǎn)A落在四邊形BCED內(nèi)部變?yōu)镕時(shí),則∠F和∠BDF+∠CEF之間的數(shù)量關(guān)系始終保持不變,請(qǐng)你直接寫(xiě)出它們之間的關(guān)系式:
∠BDF+∠CEF=2∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖1,△ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C在△ABC外作直線MN,AM⊥MN,BN⊥MN,垂足分別是M,N.
(1)求證:MN=AM+BN;
(2)若過(guò)點(diǎn)C在△ABC內(nèi)作直線MN,如圖2,AM⊥MN,BN⊥MN,垂足分別是M,N,則AM、BN與MN之間有什么關(guān)系?只需寫(xiě)出結(jié)論即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分12分)

情境觀察:將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.

觀察圖2可知:與BC相等的線段是      ,∠CAC′=      °.

問(wèn)題探究:如圖3,△ABC中,AGBC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰RtABE和等腰RtACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸:如圖4,△ABC中,AGBC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GAEF于點(diǎn)H. 若AB=k AEAC=k AF,試探究HEHF之間的數(shù)量關(guān)系,并說(shuō)明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(廣東珠海卷)數(shù)學(xué) 題型:解答題

(本題滿分12分)

情境觀察:將矩形ABCD紙片沿對(duì)角線AC剪開(kāi),得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)DA(A′)、B在同一條直線上,如圖2所示.

觀察圖2可知:與BC相等的線段是      ,∠CAC′=      °.

問(wèn)題探究:如圖3,△ABC中,AGBC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰RtABE和等腰RtACF,過(guò)點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q. 試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

拓展延伸:如圖4,△ABC中,AGBC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GAEF于點(diǎn)H. 若AB= k AE,AC= k AF,試探究HEHF之間的數(shù)量關(guān)系,并說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案