【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
【答案】(1)證明見解析; (2)菱形的面積為8.
【解析】試題分析:(1)從所給的條件可知,DE是△ABC中位線,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四邊形BCFE是平行四邊形,又因為BE=FE,所以是菱形;
(2)∠BCF是120°,所以∠EBC為60°,所以菱形的邊長也為4,求出菱形的高面積就可求.
試題解析:(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵BE=FE,∴四邊形BCFE是菱形;
(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為2,∴菱形的面積為4×2=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向營運,向東為正,向西為負(fù),行車?yán)锍蹋▎挝唬?/span>)依先后次序記錄如下:,,,,,,,,,.
將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠(yuǎn)?在鼓樓的什么方向?
出租車在行駛過程中,離鼓樓最遠(yuǎn)的距離是多少?
出租車按物價部門規(guī)定,起步價(不超過千米)為元,超過千米的部分每千米的價格為元,司機(jī)一個下午的營業(yè)額是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個工程隊共同承擔(dān)一項筑路任務(wù),甲隊單獨施工完成此項任務(wù)比乙隊單獨施工完成此項任務(wù)多用10天,且甲隊單獨施工45天和乙隊單獨施工30天的工作量相同.
(1)甲、乙兩隊單獨完成此項任務(wù)各需多少天?
(2)若甲、乙兩隊共同工作了3天后,乙隊因設(shè)備檢修停止施工,由甲隊繼續(xù)施工,為了不影響工程進(jìn)度,甲隊的工作效率提高到原來的2倍,要使甲隊總的工作量不少于乙隊的工作量的2倍,那么甲隊至少再單獨施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李先生在2018年9月第14周星期五股市收盤時,以每股9元的價格買進(jìn)某公司的股票1000股,在9月第3周的星期一至星期五,該股票每天收盤時每股的漲跌(單位:元)情況如下表:注:表中記錄的數(shù)據(jù)為每天收盤價格與前一天收盤價格的變化量,星期一的數(shù)據(jù)是與上星期五收盤價格的變化量.
(1)請你判斷在9月的第3周內(nèi),該股票價格收盤時,價格最高的是哪一天?
(2)在9月第3周內(nèi),求李先生購買的股票每股每天平均的收盤價格.(結(jié)果精確到百分位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知P為⊙O外一點,PA為⊙O的切線,B為⊙O上一點,且PA=PB,C為優(yōu)弧 上任意一點(不與A、B重合),連接OP、AB,AB與OP相交于點D,連接AC、BC.
(1)求證:PB為⊙O的切線;
(2)若tan∠BCA= ,⊙O的半徑為 ,求弦AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點E,F分別在邊BC,CD上,且∠EAF=∠CEF=45°.
(1)延長CB至G點,使得BG=DF (如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2;
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)甲、乙兩種型號的滑板車,共花費13000元,所購進(jìn)甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過乙型車數(shù)量的三倍.現(xiàn)已知甲型車每輛進(jìn)價200元,乙型車每輛進(jìn)價400元,設(shè)商店購進(jìn)乙型車x輛.
(1)商店有哪幾種購車方案?
(2)若商店將購進(jìn)的甲、乙兩種型號的滑板車全部售出,并且銷售甲型車每輛獲得利潤70元,銷售乙型車每輛獲得利潤50元,寫出此商店銷售這兩種滑板車所獲得的總利潤y(元)與購進(jìn)乙型車的輛數(shù)x(輛)之間的函數(shù)關(guān)系式?并求出商店購進(jìn)乙型車多少輛時所獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.
思路:(1) 作AD⊥BC于D,設(shè)BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型,求出x;(3)利用勾股定理求出AD的長,再計算三角形面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com