【題目】“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校共有3000人,數(shù)學課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調查了部分學生,調查結果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調查結果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結合圖中所給的信息解答下列問題:

1)扇形統(tǒng)計圖中C所對應的扇形圓心角度數(shù)為   ;估計全校非常了解交通法規(guī)的有   人.

2)補全條形統(tǒng)計圖;

3)學校準備從組內的甲、乙、丙、丁四位學生中隨機抽取兩名學生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求丙和丁兩名同學同事被選中的概率.

【答案】190°,1200;(2)詳見解析;(3

【解析】

1)由A的人數(shù)及其所占百分比可得總人數(shù),用360°乘以C人數(shù)所占比例,由總人數(shù)可求全校非常了解交通法規(guī)的人數(shù)即可得;

2)總人數(shù)乘以D的百分比求得其人數(shù),再根據(jù)各類型人數(shù)之和等于總人數(shù)求得B的人數(shù),據(jù)此補全圖形即可得;

3)畫樹狀圖列出所有等可能結果,再利用概率公式計算可得.

解:(1)本次調查的學生總人數(shù)為24÷40%60(人),

∴扇形統(tǒng)計圖中C所對應扇形的圓心角度數(shù)是360°×90°,

全校非常了解交通法規(guī)的有:3000×40%1200(人),

故答案為:90°,1200;

2D類別人數(shù)為60×5%3

B類別人數(shù)為60﹣(24+15+3)=18,

補全條形圖如下:

3)畫樹狀圖為:

共有12種等可能的結果數(shù),其中丙和丁兩名學生同時被選中的結果數(shù)為2,

所以丙和丁兩名學生同時被選中的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓的直徑,點D在半圓弧上,過點DAB的平行線與過點A半圓的切線交于點C,點EAB上,若DE垂直平分BC,則______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,CFAB于點F,過點DDEBC的延長線于點E,且CFDE

1)求證:△BFC≌△CED;

2)若∠B60°,AF5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線和拋物線為正整數(shù)).

1)拋物線軸的交點______,頂點坐標______;

2)當時,請解答下列問題.

①直接寫出軸的交點______,頂點坐標______,請寫出拋物線,的一條相同的圖象性質______

②當直線,相交共有4個交點時,求的取值范圍.

3)若直線)與拋物線,拋物線為正整數(shù))共有4個交點,從左至右依次標記為點,點,點,點,當時,求出,之間滿足的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

1)如圖①,在△ABC中,ABAC10BC12,點O是△ABC的外接圓的圓心,則OB的長為   

問題探究

2)如圖②,已知矩形ABCDAB4,AD6,點EAD的中點,以BC為直徑作半圓O,點P為半圓O上一動點,求E、P之間的最大距離;

問題解決

3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對的劣弧場地組成的,果園主人現(xiàn)要從入口D上的一點P修建一條筆直的小路DP.已知ADBC,∠ADB45°BD120米,BC160米,過弦BC的中點EEFBC于點F,又測得EF40米.修建小路平均每米需要40元(小路寬度不計),不考慮其他因素,請你根據(jù)以上信息,幫助果園主人計算修建這條小路最多要花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)如今,“垃圾分類”意識已深入人心,垃圾一般可分為:可回收物、廚余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了兩袋垃圾.

1)直接寫出甲所拿的垃圾恰好是“廚余垃圾”的概率;

2)求乙所拿的兩袋垃圾不同類的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如圖,把經過拋物線 (,, 為常數(shù))軸的交點和頂點的直線稱為拋物線的“伴線”,若拋物線與軸交于,兩點(的右側),經過點和點的直線稱為拋物線的“標線”.

(1)已知拋物線,求伴線的解析式.

(2)若伴線為,標線為,

①求拋物線的解析式;

②設為“標線”上一動點,過平行于“伴線”,交“標線”上方的拋物線于,求線段長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點EF分別在矩形ABCD的邊ABBC上,連接EF,將BEF沿直線EF翻折得到HEF,AB8,BC6AEEB31

1)如圖1,當∠BEF45°時,EH的延長線交DC于點M,求HM的長;

2)如圖2,當FH的延長線經過點D時,求tanFEH的值;

3)如圖3,連接AHHC,當點F在線段BC上運動時,試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4.點GE分別在邊ABCD上,點FH在對角線AC上.若四邊形EFGH是菱形,則AG的長是(

A.B.5C.D.6

查看答案和解析>>

同步練習冊答案