試題分析:(1)由旋轉(zhuǎn)可得出∠AOF=135°,再由矩形的內(nèi)角為直角得到一個角為直角,利用∠AOF-∠AOC求出∠COF的度數(shù),再由∠MOC為直角,由∠MOC-∠COF即可求出∠MOF的度數(shù);由∠MOF的度數(shù)為45°,利用兩直線平行得到一對內(nèi)錯角相等,可得出三角形OHM為等腰直角三角形,由OH=MH=2,利用勾股定理即可求出OM的長;
(2)①如圖所示,當(dāng)AD與BO平行時,由AB與DO平行,利用兩組對邊分別平行的四邊形為平行四邊形得到ABOD為平行四邊形,由平行四邊形的對邊相等得到AB=DO=2,由平移可知:∠HEM=45°,可得出∠OMD=∠ODM=45°,即三角形ODM為等腰直角三角形,得到OD=OM,由OD的長求出OM的長,由三角形HEM為等腰直角三角形,且直角邊長為2,利用勾股定理求出EM的長,用EM-OM即可求出平移的距離,即為t的值;
②分三種情況考慮:(i)如圖1所示,當(dāng)0<t<2時,重疊部分為等腰直角三角形,由平移的距離為t,得到等腰直角三角形直角邊為t,利用三角形的面積公式即可表示出S;(ii)如圖2所示,當(dāng)
時,重疊部分為直角梯形,表示出上底,下底及高,利用梯形的面積公式表示出S即可;(iii)如圖3所示,當(dāng)
時,重疊部分為五邊形,由梯形面積-三角形面積,表示出S即可.
試題解析:
解:(1)如圖所示:
由旋轉(zhuǎn)可得:∠AOF=135°,又∠AOC=90°,
∴∠COF=∠AOF-∠AOC=45°,又∠MOC=90°,
∴∠FOM=45°,又OF∥HG,
∴∠OMH=∠FOM=45°,又∠H=90°,
∴△OHM為等腰直角三角形,
∴OH=HM=2,
則根據(jù)勾股定理得:
;
(2)①如圖所示:連接AD,BO
∵AD∥BO,AB∥OD,
∴四邊形ADOB為平行四邊形,
∴DO=AB=2,
由平移可知:∠HEM=45°,
∴∠OMD=∠ODM=45°,
∴OM=OD=2,由平移可知:
,∴矩形EFGH平移的路程
;
②分三種情況考慮:
(i)如圖1所示,當(dāng)0<t≤2時,重疊部分為等腰直角三角形,此時OE=t,則重疊部分面積
(ii)如圖2所示,當(dāng)
時,重疊部分為直角梯形,
此時
(iii)如圖3所示,當(dāng)
時,E點在A點下方,重疊部分為五邊形,此時
綜上,
.