【題目】如圖所示,現(xiàn)有一張邊長(zhǎng)為4的正方形紙片ABCD,點(diǎn)P為正方形AD邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)D重合)將正方形紙片折疊,使點(diǎn)B落在P處,點(diǎn)C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當(dāng)點(diǎn)P在邊AD上移動(dòng)時(shí),△PDH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問(wèn)S是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2)不變?yōu)槎ㄖ?,證明見(jiàn)解析(3)當(dāng)x=2時(shí),S有最小值6
【解析】解:(1)如圖1,
∵PE=BE,∴∠EBP=∠EPB.
又∵∠EPH=∠EBC=90°,
∴∠EPH﹣∠EPB=∠EBC﹣∠EBP,即∠PBC=∠BPH。
又∵AD∥BC,∴∠APB=∠PBC。∴∠APB=∠BPH。
(2)△PHD的周長(zhǎng)不變?yōu)槎ㄖ?。證明如下:
如圖2,過(guò)B作BQ⊥PH,垂足為Q。
由(1)知∠APB=∠BPH,
又∵∠A=∠BQP=90°,BP=BP,
∴△ABP≌△QBP(AAS)。∴AP=QP,AB=BQ。
又∵AB=BC,∴BC=BQ。
又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)。∴CH=QH。
∴△PHD的周長(zhǎng)為:PD+DH+PH=AP+PD+DH+HC=AD+CD=8。
(3)如圖3,過(guò)F作FM⊥AB,垂足為M,則FM=BC=AB。
又∵EF為折痕,∴EF⊥BP。
∴∠EFM+∠MEF=∠ABP+∠BEF=90°。∴∠EFM=∠ABP。
又∵∠A=∠EMF=90°,AB=ME,∴△EFM≌△BPA(ASA)。
∴EM=AP=x.
∴在Rt△APE中,(4﹣BE)2+x2=BE2,即。
∴。
又∵四邊形PEFG與四邊形BEFC全等,
∴。
∵,∴當(dāng)x=2時(shí),S有最小值6。
(1)根據(jù)翻折變換的性質(zhì)得出∠PBC=∠BPH,進(jìn)而利用平行線的性質(zhì)得出∠APB=∠PBC即可得出答案。
(2)先由AAS證明△ABP≌△QBP,從而由HL得出△BCH≌△BQH,即可得CH=QH。因此,△PDH的周長(zhǎng)=PD+DH+PH=AP+PD+DH+HC=AD+CD=8為定值。
(3)利用已知得出△EFM≌△BPA,從而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函數(shù)的最值求出即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知開(kāi)口向下的拋物線y=ax2﹣2ax+3與x軸的交點(diǎn)為A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為C,OC=3OA
(1)請(qǐng)直接寫(xiě)出該拋物線解析式;
(2)如圖,D為拋物線的頂點(diǎn),連接BD、BC,P為對(duì)稱(chēng)軸右側(cè)拋物線上一點(diǎn).若∠ABD=∠BCP,求點(diǎn)P的坐標(biāo)
(3)在(2)的條件下,M、N是拋物線上的動(dòng)點(diǎn).若∠MPN=90°,直線MN必過(guò)一定點(diǎn),請(qǐng)求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠ABC的平分線交⊙O于點(diǎn)D,DE⊥BC于點(diǎn)E.
(1)試判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)D作DF⊥AB于點(diǎn)F,若BE=3,DF=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在蘇州園林研學(xué)時(shí),校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)的高度,他們?cè)谶@棵樹(shù)的正前方一座樓亭前的臺(tái)階上點(diǎn)處測(cè)得樹(shù)頂端的仰角為,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)處,測(cè)得樹(shù)頂端的仰角為.已知點(diǎn)的高度為米,臺(tái)階的坡度為 (即),且三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)的高度(側(cè)傾器的高度忽略不計(jì)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰三角形ACB中,AC=BC=10,AB=16,D為底邊AB上一動(dòng)點(diǎn)(不與點(diǎn)A,B重合),DE⊥AC,DF⊥BC,垂足分別為點(diǎn)E,F,則DE+DF等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)C,設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo).
(2)試判斷△BCD的形狀,并說(shuō)明理由.
(3)若點(diǎn)E在x軸上,點(diǎn)Q在拋物線上.是否存在以B、C、E、Q為頂點(diǎn)且以BC為一邊的平行四邊形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名同學(xué)從《中國(guó)好聲音》、《歌手》、《蒙面唱將猜猜猜》三個(gè)綜藝節(jié)目中都隨機(jī)選擇一個(gè)節(jié)目觀看.
(1)甲同學(xué)觀看《蒙面唱將猜猜猜》的概率是 ;
(2)求甲、乙兩名同學(xué)觀看同一節(jié)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)店銷(xiāo)售一部A型手機(jī)比銷(xiāo)售一部B型手機(jī)獲得的利潤(rùn)多50元,銷(xiāo)售相同數(shù)量的A型手機(jī)和B型手機(jī)獲得的利潤(rùn)分別為3000元和2000元.
(1)求每部A型手機(jī)和B型手機(jī)的銷(xiāo)售利潤(rùn)分別為多少元?
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的手機(jī)共110部,其中A型手機(jī)的進(jìn)貨量不超過(guò)B型手機(jī)的2倍.設(shè)購(gòu)進(jìn)B型手機(jī)n部,這110部手機(jī)的銷(xiāo)售總利潤(rùn)為y元.
①求y關(guān)于n的函數(shù)關(guān)系式;
②該手機(jī)店購(gòu)進(jìn)A型、B型手機(jī)各多少部,才能使銷(xiāo)售總利潤(rùn)最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)B型手機(jī)出廠價(jià)下調(diào)m(30<m<100)元,且限定商店最多購(gòu)進(jìn)B型手機(jī)80臺(tái).若商店保持兩種手機(jī)的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使這110部手機(jī)銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com