【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E,F分別在BCCD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號(hào)是______

【答案】①②④

【解析】

根據(jù)三角形的全等的知識(shí)可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷④的正誤;根據(jù)線段垂直平分線的知識(shí)可以判斷③的正誤,根據(jù)三線合一的性質(zhì),可判定ACEF,然后分別求得AGCG的長(zhǎng),繼而求得答案.

解:∵四邊形ABCD是正方形,

AB=AD,

∵△AEF是等邊三角形,

AE=AF,

RtABERtADF中,,

RtABERtADFHL),

BE=DF,

BC=DC,

BC-BE=CD-DF

CE=CF,故①正確;

CE=CF,

∴△ECF是等腰直角三角形,

∴∠CEF=45°,

∵∠AEF=60°

∴∠AEB=75°,故④正確;

如圖,連接AC,交EFG點(diǎn),

ACEF,且AC平分EF

∵∠CAF≠DAF,

DF≠FG,

BE+DF≠EF,故③錯(cuò)誤;

∵△AEF是邊長(zhǎng)為2的等邊三角形,∠ACB=ACD,

ACEF,EG=FG,

AG=AEsin60°=2×=,CG=EF=1,

AC=AG+CG=+1;故②正確.

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是根據(jù)某市2010年至2014年工業(yè)生產(chǎn)總值繪制的折線統(tǒng)計(jì)圖,觀察統(tǒng)計(jì)圖獲得以下信息,其中信息判斷錯(cuò)誤的是(

A.2010年至2014年間工業(yè)生產(chǎn)總值逐年增加

B.2014年的工業(yè)生產(chǎn)總值比前一年增加了40億元

C.2012年與2013年每一年與前一年比,其增長(zhǎng)額相同

D.從2011年至2014年,每一年與前一年比,2014年的增長(zhǎng)率最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017貴州省遵義市)如圖,拋物線a<0,a、b為常數(shù))與x軸交于AC兩點(diǎn),與y軸交于B點(diǎn),直線AB的函數(shù)關(guān)系式為

(1)求該拋物線的函數(shù)關(guān)系式與C點(diǎn)坐標(biāo);

(2)已知點(diǎn)Mm,0)是線段OA上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Mx軸的垂線l分別與直線AB和拋物線交于D、E兩點(diǎn),當(dāng)m為何值時(shí),BDE恰好是以DE為底邊的等腰三角形?

(3)在(2)問(wèn)條件下,當(dāng)BDE恰好是以DE為底邊的等腰三角形時(shí),動(dòng)點(diǎn)M相應(yīng)位置記為點(diǎn)M,將OM繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到ON(旋轉(zhuǎn)角在90°之間);

①探究:線段OB上是否存在定點(diǎn)PP不與OB重合),無(wú)論ON如何旋轉(zhuǎn),始終保持不變,若存在,試求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

②試求出此旋轉(zhuǎn)過(guò)程中,(NA+NB)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接:國(guó)家衛(wèi)生城市復(fù)檢,某市環(huán)衛(wèi)局準(zhǔn)備購(gòu)買(mǎi)A,B兩種型號(hào)的垃圾箱,通過(guò)市場(chǎng)調(diào)研得知:購(gòu)買(mǎi)3個(gè)A型垃圾箱和2個(gè)B型垃圾箱共需540元,購(gòu)買(mǎi)2個(gè)A型垃圾箱比購(gòu)買(mǎi)3個(gè)B型垃圾箱少用160元.

1)求每個(gè)A型垃圾箱和B型垃圾箱各多少元?

2)該市現(xiàn)需要購(gòu)買(mǎi)AB兩種型號(hào)的垃圾箱共30個(gè),其中買(mǎi)A型垃圾箱不超過(guò)16個(gè).

①求購(gòu)買(mǎi)垃圾箱的總花費(fèi)w(元)與A型垃圾箱x(個(gè))之間的函數(shù)關(guān)系式;

②當(dāng)買(mǎi)A型垃圾箱多少個(gè)時(shí)總費(fèi)用最少,最少費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形AOBC中,OB4,OA3.分別以OB、OA所在直線為x軸、y軸,建立如圖1所示的平面直角坐標(biāo)系.FBC邊上一個(gè)動(dòng)點(diǎn)(不與B、C重合).過(guò)點(diǎn)F的反比例函數(shù)yk0)的圖象與邊AC交于點(diǎn)E

1)當(dāng)點(diǎn)F運(yùn)動(dòng)到邊BC的中點(diǎn)時(shí),點(diǎn)E的坐標(biāo)為__________

2)連接EF,求∠EFC的正切值;

3)如圖2,將△CEF沿EF折疊,點(diǎn)C恰好落在邊OB上的點(diǎn)G處,求BG的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn)A和點(diǎn)B(3,0,與軸交于點(diǎn)C(0,3

(1求拋物線的解析式;

(2若點(diǎn)M是拋物線在軸下方上的動(dòng)點(diǎn),過(guò)點(diǎn)M作MN//軸交直線BC點(diǎn)N,求線段MN的最大值;

(3在(2的條件下,當(dāng)MN取最大值時(shí),在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PBN是等腰三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),拋物線軸正半軸于點(diǎn),連結(jié),

1)求點(diǎn)的坐標(biāo);

2)求直線的表達(dá)式;

3)設(shè)拋物線分別交邊,延長(zhǎng)線于點(diǎn),

①若,求拋物線表達(dá)式;

②若相似,則的值為 .(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,如圖:(1)以為圓心,任意長(zhǎng)為半徑畫(huà)弧分別交、于點(diǎn);(2)分別以、為圓心,大于的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn);(3)連結(jié)并延長(zhǎng)交于點(diǎn).根據(jù)以上作圖過(guò)程,下列結(jié)論中錯(cuò)誤的是(

A.的平分線B.

C.點(diǎn)的中垂線上D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線My=-x2+2bx+c與直線ly=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2

1)請(qǐng)用含有b的代數(shù)式表示c: ;

2)若點(diǎn)B在直線l上,且B的橫坐標(biāo)為-1,點(diǎn)C的坐標(biāo)為(b5).

①若拋物線M還過(guò)點(diǎn)B,直接寫(xiě)出該拋物線的解析式;

②若拋物線M與線段BC恰有一個(gè)交點(diǎn),結(jié)合函數(shù)圖象,直接寫(xiě)出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案