如圖,直線AB、CD相交于點O,OE⊥OC,若∠1=50°,則∠2=  .∠3+∠1=  

考點:

垂線;對頂角、鄰補角.

分析:

先由垂直的定義得出∠COE=90°,再根據(jù)平角的定義求出∠2=40°,根據(jù)鄰補角互補得出∠3=180°﹣∠2=140°,將∠1=50°代入即可求出∠3+∠1的度數(shù).

解答:

解:∵OE⊥OC,

∴∠COE=90°,

∴∠1+∠2=180°﹣∠COE=90°,

∵∠1=50°,

∴∠2=40°,

∴∠3=180°﹣∠2=140°,

∴∠3+∠1=140°+50°=190°.

故答案為40°,190°.

點評:

本題利用垂直的定義,平角及鄰補角的性質(zhì)計算,要注意領(lǐng)會由垂直得直角這一要點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,直線AB、CD、EF都經(jīng)過點O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線AB與CD相交于點O,OE⊥AB,OF⊥CD.
(1)圖中∠AOF的余角是
 
(把符合條件的角都填出來).
(2)圖中除直角相等外,還有相等的角,請寫出三對:
 
;②
 
;③
 

(3)①如果∠AOD=140°.那么根據(jù)
 
,可得∠BOC=
 
度.
②如果∠EOF=
15
∠AOD
,求∠EOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、完成推理填空:如圖:直線AB、CD被EF所截,若已知AB∥CD,
求證:∠1=∠2.
請你認真完成下面填空.
證明:∵AB∥CD    (已知),
∴∠1=∠
3
( 兩直線平行,
同位角相等
 )
又∵∠2=∠3,(
對頂角相等
 )
∴∠1=∠2 (
等量代換
 ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB、CD、EF相交于點O,AB⊥CD,OG平分∠AOE,∠FOD=24°,∠COG的度數(shù)=
33°
33°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線AB,CD相交于O點,EO⊥CD,垂足為O點,若∠BOE=50°,求∠AOD的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案