在圖中,若∠A+∠B=180°,∠C=65°,則∠1=________°.

65
分析:首先根據(jù)同旁內(nèi)角互補(bǔ)兩直線平行證得:AD∥BC,然后利用平行線的性質(zhì)即可求解.
解答:∵∠A+∠B=180°,
∴AD∥BC,
∴∠1=∠C=65°.
故答案是:65.
點(diǎn)評(píng):本題考查了平行線的判定與性質(zhì),正確理解定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,直線AM⊥AN,⊙O分別與AM、AN相切于B、C兩點(diǎn),連接OC、BC,則有∠ACB=∠OCB;(請(qǐng)思考:為什么?)如果測(cè)得AB=a,則可知⊙O的半徑r=a.(請(qǐng)思考:為什么?)
(1)將圖①中直線AN向右平移,與⊙O相交于C1、C2兩點(diǎn),⊙O與AM的切點(diǎn)仍記為B,如圖②.請(qǐng)你寫(xiě)出與平移前相應(yīng)的結(jié)論,并將圖②補(bǔ)充完整;判斷此結(jié)論是否成立,且說(shuō)明理由.
(2)在圖②中,若只測(cè)得AB=a,能否求出⊙O的半徑r?若能求出,請(qǐng)你用a表示r;若不能求出,請(qǐng)補(bǔ)充一個(gè)條件(補(bǔ)充條件時(shí)不能添加輔助線,若補(bǔ)充線段請(qǐng)用b表示,若補(bǔ)充角請(qǐng)用α表示),并用a和補(bǔ)充的條精英家教網(wǎng)件表示r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢)將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時(shí)針旋轉(zhuǎn)45°得圖②,點(diǎn)P1是A1C與AB的交點(diǎn),點(diǎn)Q是A1B1與BC的交點(diǎn),求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
(3)如圖③,在B1C上取一點(diǎn)E,連接BE、P1E,設(shè)BC=1,當(dāng)BE⊥P1B時(shí),求△P1BE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,E是AB上一點(diǎn),F(xiàn)是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
①求證:CE=CF;
②在圖①中,若G在AD上,且∠GCE=45°,則GE、BE、GD有何關(guān)系?證明你的結(jié)論;
③運(yùn)用①②解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題.如圖②在直角梯形ABCD中,AD∥BC(BC>AD)∠B=90°,AB=BC=12,E是AB上一點(diǎn),且∠DCE=45°,BE=4,求DE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,已知四邊形ABCD是正方形,點(diǎn)E是AB的中點(diǎn),點(diǎn)F在邊CB的延長(zhǎng)線上,且BE=BF,連接EF.
(1)若取AE的中點(diǎn)P,求證:BP=
12
CF;
(2)在圖①中,若將△BEF繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)α(0<α<360°),如圖②,是否存在某位置,使得AE∥BF?若存在,求出所有可能的旋轉(zhuǎn)角α的大。蝗舨淮嬖,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問(wèn)題:正方形ABCD中,M,N分別是直線CB、DC上的動(dòng)點(diǎn),∠MAN=45°,當(dāng)∠MAN交邊CB、DC于點(diǎn)M、N(如圖①)時(shí),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?
小聰同學(xué)的思路是:延長(zhǎng)CB至E使BE=DN,并連接AE,構(gòu)造全等三角形經(jīng)過(guò)推理使問(wèn)題得到解決.請(qǐng)你參考小聰同學(xué)的思路,探究并解決下列問(wèn)題:
(1)直接寫(xiě)出上面問(wèn)題中,線段BM,DN和MN之間的數(shù)量關(guān)系;
(2)當(dāng)∠MAN分別交邊CB,DC的延長(zhǎng)線于點(diǎn)M/N時(shí)(如圖②),線段BM,DN和MN之間的又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,并加以證明;
(3)在圖①中,若正方形的邊長(zhǎng)為16cm,DN=4cm,請(qǐng)利用(1)中的結(jié)論,試求MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案