扇形OAB的半徑OA=1,圓心角∠AOB=90°,點C是弧AB上的動點,連結(jié)AC和BC,記弦AC,CB與弧AC、CB圍成的陰影部分的面積為S,則S的最小值為( 。

  A. B. C.   D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于精英家教網(wǎng)點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線PC交OA的延長線于點P,且∠CPD=∠CDE.
(1)求證:DM=
2
3
r;
(2)求證:直線PC是扇形OAB所在圓的切線;
(3)設(shè)y=CD2+3CM2,當(dāng)∠CPO=60°時,請求出y關(guān)于r的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形;
(2)當(dāng)點C在
AB
上運動時,在CD、CG、DG中,是否存在長度不變的線段?若存在,請求出該線段的長度;
(3)求證:CD2+3CH2是定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點G、H在線段DE上,且DG=GH=HE
(1)求證:四邊形OGCH是平行四邊形.
(2)當(dāng)點C在
AB
上運動時,在CD、CG、DG中,是否存在長度不變的線段?若存在,請求出該線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=6,圓心角∠AOB=90°,C是
AB
上不同于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連接DE,點H在線段DE上,且EH=
2
3
DE.設(shè)EC的長為x,△CEH的面積為y,選項中表示y與x的函數(shù)關(guān)系式的圖象可能是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線CP交OA的延長線于點P,且∠CPO=∠CDE.
(1)試說明:DM=
2
3
r;
(2)試說明:直線CP是扇形OAB所在圓的切線.

查看答案和解析>>

同步練習(xí)冊答案