精英家教網 > 初中數學 > 題目詳情
(2012•衡陽)如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:
①a>0   ②2a+b=0  ③a+b+c>0  ④當-1<x<3時,y>0
其中正確的個數為( 。
分析:由拋物線的開口方向判斷a與0的關系,由x=1時的函數值判斷a+b+c>0,然后根據對稱軸推出2a+b與0的關系,根據圖象判斷-1<x<3時,y的符號.
解答:解:①圖象開口向下,能得到a<0;
②對稱軸在y軸右側,x=
-1+3
2
=1,則有-
b
2a
=1,即2a+b=0;
③當x=1時,y>0,則a+b+c>0;
④由圖可知,當-1<x<3時,y>0.
故選C.
點評:本題主要考查圖象與二次函數系數之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2012•衡陽)如圖,一段河壩的橫截面為梯形ABCD,試根據圖中數據,求出壩底寬AD.(i=CE:ED,單位:m)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•衡陽)如圖,A、B兩點的坐標分別是(8,0)、(0,6),點P由點B出發(fā)沿BA方向向點A作勻速直線運動,速度為每秒3個單位長度,點Q由A出發(fā)沿AO(O為坐標原點)方向向點O作勻速直線運動,速度為每秒2個單位長度,連接PQ,若設運動時間為t(0<t<
103
)秒.解答如下問題:
(1)當t為何值時,PQ∥BO?
(2)設△AQP的面積為S,
①求S與t之間的函數關系式,并求出S的最大值;
②若我們規(guī)定:點P、Q的坐標分別為(x1,y1),(x2,y2),則新坐標(x2-x1,y2-y1)稱為“向量PQ”的坐標.當S取最大值時,求“向量PQ”的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點為坐標原點O,矩形ABCD的頂點A,D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標為(2,1),點P(a,b)在拋物線上運動.(點P異于點O)
(1)求此拋物線的解析式.
(2)過點P作CB所在直線的垂線,垂足為點R,
①求證:PF=PR;
②是否存在點P,使得△PFR為等邊三角形?若存在,求出點P的坐標;若不存在,請說明理由;
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•衡陽)如圖,直線a⊥直線c,直線b⊥直線c,若∠1=70°,則∠2=( 。

查看答案和解析>>

同步練習冊答案