【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=x2﹣2x , 其對稱軸與兩拋物線所圍成的陰影部分的面積是

【答案】1
【解析】先利用配方法得到拋物線y=x2-2x的頂點(diǎn)坐標(biāo)為(1,-1),則拋物線y=x2向右平移1個單位,向下平移1個單位得到拋物線y=x2-2x,然后利用陰影部分的面積等于三角形面積進(jìn)行計算. 解:y=x2-2x=(x-1)2-1,即平移后拋物線的頂點(diǎn)坐標(biāo)為(1,-1), 所以拋物線y=x2向右平移1個單位,向下平移1個單位得到拋物線y=x2-2x, 所以對稱軸與兩拋物線所圍成的陰影部分的面積= ×1×2=1. 故答案為1.

根據(jù)已知可知兩圖像是通過平移得到的,因此它們的形狀和大小一樣,先求出平移后的頂點(diǎn)坐標(biāo),及對稱軸,要求其對稱軸與兩拋物線所圍成的陰影部分的面積轉(zhuǎn)化為求三角形的面積,即可求出結(jié)果。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知AD∥BC,且DC⊥AD于D.

(1)DC與BC有怎樣的位置關(guān)系?說說你的理由;

(2)你能說明∠1+∠2=180°嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰Rt△ABC(∠ACB=90°)的直角邊與正方形DEFG的邊長均為2,且AC與DE在同一直線上,開始時點(diǎn)C與點(diǎn)D重合,讓△ABC沿這條直線向右平移,直到點(diǎn)A與點(diǎn)E重合為止.設(shè)CD的長為x,△ABC與正方形DEFG重合部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)a(a3)(a)(a);

(2)(2xy)(y2x)4(yx)(xy)

(3)(3a1)(9a21)(3a1);

(4)(1x)(1x2)(1x)(1x4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(a-1,a+b),B(a,0),且|a+b-3|+(a-2b)2=0,C為x軸上點(diǎn)B右側(cè)的動點(diǎn),以AC為腰作等腰三角形ACD,使AD=AC,∠CAD=∠OAB,直線DB交y軸于點(diǎn)P.

(1)求證:AO=AB;

(2)求證:△AOC≌△ABD;

(3)當(dāng)點(diǎn)C運(yùn)動時,點(diǎn)P在y軸上的位置是否發(fā)生改變,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:

①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在他家里的時鐘上安裝了一個電腦軟件,他設(shè)定當(dāng)鐘聲在n點(diǎn)鐘響起后,下一次則在(3n﹣1)小時后響起,例如鐘聲第一次在3點(diǎn)鐘響起,那么第2次在(3×3﹣1=8)小時后,也就是11點(diǎn)響起,第3次在(3×11﹣1=32)小時后,即7點(diǎn)響起,以此類推…;現(xiàn)在第1次鐘聲響起時為2點(diǎn)鐘,那么第3次響起時為點(diǎn),第2017次響起時為點(diǎn)(如圖鐘表,時間為12小時制).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,它的垂直平分線分別交AB、BC于點(diǎn)E、F、G,連接ED、DG.
(1)請判斷四邊形EBGD的形狀,并說明理由;
(2)若∠ABC=30°,∠C=45°,ED=2,求GC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形中,邊,以點(diǎn)為原點(diǎn),,所在的直線為軸和軸,建立直角坐標(biāo)系.

1)點(diǎn)的坐標(biāo)為,則點(diǎn)坐標(biāo)為______,點(diǎn)坐標(biāo)為______;

2)當(dāng)點(diǎn)出發(fā),以2單位/秒的速度沿方向移動(不過點(diǎn)),從原點(diǎn)出發(fā)以1單位/秒的速度沿方向移動(不過點(diǎn)),,同時出發(fā),在移動過程中,四邊形的面積是否變化?若不變,求其值;若變化,求其變化范圍.

查看答案和解析>>

同步練習(xí)冊答案