若在△ABC中,AB=5cm,BC=6cm,BC邊上的中線AD=4cm,則∠ADC的度數(shù)是    度.
【答案】分析:根據(jù)題意,畫(huà)出圖形,根據(jù)中線的定義,求出BD,由勾股定理的逆定理判斷出△ABD為直角三角形,從而求得∠ADC的度數(shù).
解答:解:∵AB=5cm,BC=6cm,AD=4cm,
又∵AD為BC邊上的中線,
∴BD=6×=3,
∴AB2=AD2+BD2,
∴△ABC為直角三角形,
∴∠ADC=∠ADB=90°,
∴∠ADC的度數(shù)是90度.
點(diǎn)評(píng):本題考查勾股定理的逆定理的應(yīng)用.判斷三角形是否為直角三角形,已知三角形三邊的長(zhǎng),只要利用勾股定理的逆定理加以判斷即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若在△ABC中,AB=5cm,BC=6cm,BC邊上的中線AD=4cm,則∠ADC的度數(shù)是
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們將能完全覆蓋某平面圖形的最小圓稱(chēng)為該平面圖形的最小覆蓋圓.例如線段AB的最小覆蓋圓就是以線段AB為直徑的圓.若在△ABC中,AB=5,AC=3,BC=4,則△ABC的最小覆蓋圓的半徑是
 
;若在△ABC中,AB=AC,BC=6,∠BAC=120°,則△ABC的最小覆蓋圓的半徑是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若在△ABC中,AB=13,AC=15,BC邊上的高AD=12,則BC的長(zhǎng)等于           。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若在△ABC中,AB=13,AC=15,BC邊上的高AD=12,則BC的長(zhǎng)等于           。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆四川漢源一中九年級(jí)期中考試數(shù)學(xué)卷 題型:填空題

若在△ABC中,AB=5cm,BC=6 cm,BC邊上的中線AD=4 cm,則∠ADC的度數(shù)是_   _。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案