20、如圖,在梯形ABCD中,AD∥BC,E為CD中點,連接AE并延長AE交BC的延長線于點F
(1)求證:CF=AD;
(2)若AD=2,AB=8,當(dāng)BC為多少時,點B在線段AF的垂直平分線上,為什么?
分析:1、通過求證△FEC≌△AED來證明CF=AD;
2、若點B在在線段AF的垂直平分線上,則應(yīng)有AB=BF∵AB=8,CF=AD=2,∴BC=BF-CF=8-2=6時有AB=BF.
解答:(1)證明:∵AD∥BC,
∴∠F=∠DAE.(1分)
又∵∠FEC=∠AED,
∴∠ECF=∠ADE,
在△FEC與△AED中,
∵∠FEC=∠AED,CE=DE,∠ECF=∠ADE,
∴△FEC≌△AED.(3分)
∴CF=AD;(4分)

(2)當(dāng)BC=6時,點B在線段AF的垂直平分線上,(6分)
其理由是:
∵BC=6,AD=2,AB=8,
∴AB=BC+AD.(7分)
又∵CF=AD,BC+CF=BF,
∴AB=BF.(8分)
∴△ABF是等腰三角形,
∴點B在AF的垂直平分線上.(9分)
點評:本題利用了:(1)、梯形的性質(zhì),(2)、全等三角形的判定和性質(zhì),(3)、中垂線的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案