如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,求證:∠BAD=∠CAO.
分析:首先延長(zhǎng)AO交⊙O于E,連接CE,根據(jù)圓周角定理,即可求得∠ACE=90°,∠B=∠E,又由AD⊥BC,根據(jù)直角三角形中兩個(gè)銳角互余,即可證得:∠BAD=∠CAO.
解答:解:延長(zhǎng)AO交⊙O于E,連接CE,
∵AE是圓的直徑,
∴∠ACE=90°,∠B=∠E,
∵AD⊥BC,
∴∠ADB=90°,
∴∠BAD+∠B=90°,∠CAO+∠E=90°,
∴∠BAD=∠CAO.
點(diǎn)評(píng):此題考查了圓周角定理與直角三角形的性質(zhì).此題難度不大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線(xiàn)的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線(xiàn)上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線(xiàn),并說(shuō)明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案