【題目】如圖中,,的垂直平分線分別交于,,垂足分別是,.
(1)若,求的周長.
(2)若,求的度數(shù).
【答案】(1)10;(2)∠DAE=20°.
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì)可得AD=BD,AE=CE,可得△ADE的周長=AD+AE+DE=BC,即可得答案;(2)根據(jù)三角形內(nèi)角和定理可得∠B+∠C=80°,根據(jù)等腰三角形的性質(zhì)可得∠BAD=∠B,∠CAE=∠C,進(jìn)而可求出∠DAE的度數(shù).
(1)∵DM、EN分別是AB、AC的垂直平分線,
∴AD=BD,AE=CE,
∵BC=10,
∴△ADE的周長=AD+DE+CE=BD+DE+CE=BC=10.
(2)∵AD=BD,AE=CE,
∴∠BAD=∠B,∠CAE=∠C,
∵∠BAC=100°,
∴∠B+∠C=180°-100°=80°,
∴∠DAE=∠BAC-∠BAD-∠CAE=∠BAC-(∠B+∠C)=100°-80°=20°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)學(xué)活動課上,小麗為了測量校園內(nèi)旗桿AB的高度,站在教學(xué)樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°.已知旗桿與教學(xué)樓的距離BD=9m,請你幫她求出旗桿的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線,分別交AD,AC于P,Q兩點;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)證明AP=AQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P在⊙O的直徑AB的延長線上,PC為⊙O的切線,點C為切點,連接AC,過點A作PC的垂線,點D為垂足,AD交⊙O于點E.
(1)如圖1,求證:∠DAC=∠PAC;
(2)如圖2,點F(與點C位于直徑AB兩側(cè))在⊙O上,,連接EF,過點F作AD的平行線交PC于點G,求證:FG=DE+DG;
(3)在(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,交于,平分交于,為延長線上一點,交的延長線于,的延長線交于,連接,下列結(jié)論:①;②∠AGH=∠BAE+∠ACB;③,其中正確的結(jié)論有( )個.
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形中,,,點,分別在射線,上,滿足.
(1)如圖1,若點,分別在線段,上,求證:;
(2)如圖2,若點,分別在線段延長線與延長線上,請直接寫出與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗中學(xué)為了了解今年參加中招考試九年級300名學(xué)生的體育成績,特對學(xué)生參加課外鍛煉的情況進(jìn)行了摸底,隨機(jī)對九年級30名學(xué)生一周內(nèi)平均每天參加課外鍛煉的時間進(jìn)行了調(diào)查,結(jié)果如下:(單位:分鐘)
(1)補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖.
(2)填空:在這個問題中,總體是___________,樣本是_________.
由統(tǒng)計分析得,這組數(shù)據(jù)的平均數(shù)是39.37(分),眾數(shù)是______,中位數(shù)是______.
(3)如果描述該校300名學(xué)生一周內(nèi)平均每天參加課外鍛煉時間的總體情況,你認(rèn)為用平均數(shù)、眾數(shù)、中位數(shù)中的哪一個量比較合適?
(4)估計實驗中學(xué)九年級有多少名學(xué)生,平均每天參加課外鍛煉的時間多于30分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于點G,交AB于點F,F(xiàn)B恰為⊙O的直徑.
(1)判斷AE與⊙O的位置關(guān)系,并說明理由;
(2)若BC=6,AC=4CE時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位籃球運(yùn)動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動,當(dāng)球運(yùn)動的水平距離為2.5m時,達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( 。
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點坐標(biāo)是(3.5,0)
D. 籃球出手時離地面的高度是2m
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com