如圖,以M(-5,0)為圓心、4為半徑的圓與x軸交于A.B兩點,P是⊙M上異于A.B的一動點,直線PA.PB分別交y軸于C.D,以CD為直徑的⊙N與x軸交于E、F,則EF的長
A.等于4
B.等于4
C.等于6
D.隨P點
分析:連接NE,設(shè)圓N半徑為r,ON=x,則OD=r-x,OC=r+x,證△OBD∽△OCA,推出OC:OB=OD:OA,即(r+x):1=9:(r-x),求出r2-x2=9,根據(jù)垂徑定理和勾股定理即可求出答案. 解答:解:連接NE, 設(shè)圓N半徑為r,ON=x,則OD=r-x,OC=r+x, ∵以M(-5,0)為圓心、4為半徑的圓與x軸交于A.B兩點, ∴OA=4+5=9,OB=5-4=1, ∵AB是⊙M的直徑, ∴∠APB=90°, ∵∠BOD=90°, ∴∠PAB+∠PBA=90°,∠ODB+∠OBD=90°, ∵∠PBA=∠OBD, ∴∠PAB=∠ODB, ∵∠APB=∠BOD=90°, ∴△OBD∽△OCA, ∴=, 即=, 解得:r2-x2=9, 由垂徑定理得:OE=OF,OE2=EN2-ON2=r2-x2=9, 即OE=OF=3, ∴EF=2OE=6, 點評:本題考查了勾股定理,垂徑定理,相似三角形的性質(zhì)和判定的應(yīng)用,解此題的關(guān)鍵是求出OE=OF和r2-x2=9,主要考查學(xué)生運用定理進行推理和計算的能力. |
垂徑定理;勾股定理;相似三角形的判定與性質(zhì). |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
3 |
3 |
3 |
3 |
3 |
3 |
4 |
5 |
4 |
5 |
16 |
5 |
16 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com