如圖,直線MN切⊙O于A,AB是⊙O的弦,∠MAB的平分線交⊙O于C,連接CB并延長(zhǎng)交MN于N,如果AN=6,NB=4,那么弦AB的長(zhǎng)是( )

A.
B.3
C.5
D.
【答案】分析:直線MN切⊙O于A,根據(jù)切割線定理得到AN2=BN•NC,因而可求得NC=9,BC=5,根據(jù)∠MAB的平分線交⊙O于C,則根據(jù)弦切角定理,據(jù)∠NAB=∠C,可證明△ABN∽△CAN,利用相似的性質(zhì)可知,列方程即可求解.
解答:解:∵AN2=BN•NC,NC=9
∴BC=5
∵∠MAC=∠B
∴∠BAC=∠ABC
∵AC=BC=5,∠NAB=∠C
∴△ABN∽△CAN


解得AB=
故選D.
點(diǎn)評(píng):本題主要考查了弦切角定理,從而轉(zhuǎn)化為三角形相似的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,直線MN切⊙O于點(diǎn)C,AB為⊙O的直徑,延長(zhǎng)BA交直線MN于M點(diǎn),AE⊥MN精英家教網(wǎng),BF⊥MN,E、F分別為垂足,BF交⊙O于G,連接AC、BC,過(guò)點(diǎn)C作CD⊥AB,D為垂足,連接OC、CG.下列結(jié)論,其中正確的有(  )
①CD=CF=CE;       ②EF2=4AE•BF;
③AD•DB=FG•FB;    ④MC•CF=MA•BF.
A、①②③B、②③④C、①③④D、①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線MN切⊙O于A,AB是⊙O的弦,∠MAB的平分線交⊙O于C,連接CB并延長(zhǎng)交MN于N,如果AN=6,NB=4,那么弦AB的長(zhǎng)是( 。
A、
15
2
B、3
C、5
D、
10
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年山西省大同市陽(yáng)高二中九年級(jí)數(shù)學(xué)復(fù)習(xí)強(qiáng)化訓(xùn)練(8)(解析版) 題型:選擇題

已知:如圖,直線MN切⊙O于點(diǎn)C,AB為⊙O的直徑,延長(zhǎng)BA交直線MN于M點(diǎn),AE⊥MN,BF⊥MN,E、F分別為垂足,BF交⊙O于G,連接AC、BC,過(guò)點(diǎn)C作CD⊥AB,D為垂足,連接OC、CG.下列結(jié)論,其中正確的有( )
①CD=CF=CE;       ②EF2=4AE•BF;
③AD•DB=FG•FB;    ④MC•CF=MA•BF.

A.①②③
B.②③④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年浙江省金華中考訓(xùn)練卷(解析版) 題型:選擇題

如圖,直線MN切⊙O于A,AB是⊙O的弦,∠MAB的平分線交⊙O于C,連接CB并延長(zhǎng)交MN于N,如果AN=6,NB=4,那么弦AB的長(zhǎng)是( )

A.
B.3
C.5
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案